SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cavalié T.) "

Sökning: WFRF:(Cavalié T.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Roelfsema, P. R., et al. (författare)
  • In-orbit performance of Herschel-HIFI
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: In this paper the calibration and in-orbit performance of the Heterodyne Instrument for the Far-Infrared (HIFI) is described.Methods: The calibration of HIFI is based on a combination of ground and in-flight tests. Dedicated ground tests to determine those instrument parameters that can only be measured accurately using controlled laboratory stimuli were carried out in the instrument level test (ILT) campaign. Special in-flight tests during the commissioning phase (CoP) and performance verification (PV) allowed the determination of the remaining instrument parameters. The various instrument observing modes, as specified in astronomical observation templates (AOTs), were validated in parallel during PV by observing selected celestial sources.Results: The initial calibration and in-orbit performance of HIFI has been established. A first estimate of the calibration budget is given. The overall in-flight instrument performance agrees with the original specification. Issues remain at only a few frequencies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
2.
  • Mousis, O., et al. (författare)
  • Scientific rationale for Saturn's in situ exploration
  • 2014
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 104, s. 29-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases' abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.
  •  
3.
  • Hartogh, P., et al. (författare)
  • HIFI observations of water in the atmosphere of comet C/2008 Q3 (Garradd)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L150
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution far-infrared and sub-millimetre spectroscopy of water lines is an important tool to understand the physical and chemical properties of cometary atmospheres. We present observations of several rotational ortho- and para-water transitions in comet C/2008 Q3 (Garradd) performed with HIFI on Herschel. These observations have provided the first detection of the 2(12)-1(01) (1669 GHz) ortho and 1(11)-0(00) (1113 GHz) para transitions of water in a cometary spectrum. In addition, the ground-state transition 1(10)-1(01) at 557 GHz is detected and mapped. By detecting several water lines quasi-simultaneously and mapping their emission we can constrain the excitation parameters in the coma. Synthetic line profiles are computed using excitation models which include excitation by collisions, solar infrared radiation, and radiation trapping. We obtain the gas kinetic temperature, constrain the electron density profile, and estimate the coma expansion velocity by analyzing the map and line shapes. We derive water production rates of 1.7-2.8 x 10(28) s(-1) over the range r(h) = 1.83-1.85 AU.
  •  
4.
  • Stephan, K., et al. (författare)
  • Regions of interest on Ganymede's and Callisto's surfaces as potential targets for ESA's JUICE mission
  • 2021
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 208
  • Tidskriftsartikel (refereegranskat)abstract
    • The JUpiter Icy moons Explorer (JUICE) will investigate Ganymede's and Callisto's surfaces and subsurfaces from orbit to explore the geologic processes that have shaped and altered their surfaces by impact, tectonics, possible cryovolcanism, space weathering due to micrometeorites, radiation and charged particles as well as explore the structure and properties of the icy crust and liquid shell (Grasset et al., 2013). The best possible synergy of the JUICE instruments is required to answer the major science objective of this mission and to fully exploit the po-tential of the JUICE mission. Therefore, the JUICE team is aiming to define high priority targets on both Gany-mede's and Callisto's surfaces to support the coordination of the planning activities by the individual instrument teams. Based on the science objectives of the JUICE mission and the most recent knowledge of Ganymede's and Callisto's geologic evolution we propose a collection of Regions of Interest (RoIs), which characterize surface features and terrain types representing important traces of geologic processes, from past and/or present cryovolcanic and tectonic activity to space weathering processes, which are crucial to understand the geologic evolution of Ganymede and Callisto. The proposed evaluation of RoIs is based on their scientific importance as well as on the opportunities and conditions to observe them during the currently discussed mission profile.
  •  
5.
  • Benmahi, B., et al. (författare)
  • Monitoring of the evolution of H2O vapor in the stratosphere of Jupiter over an 18-yr period with the Odin space telescope
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The comet Shoemaker-Levy 9 impacted Jupiter in July 1994, leaving its stratosphere with several new species, with water vapor (H2O) among them. Aims. With the aid of a photochemical model, H2O can be used as a dynamical tracer in the Jovian stratosphere. In this paper, we aim to constrain the vertical eddy diffusion (Kzz) at levels where H2O is present. Methods. We monitored the H2O disk-averaged emission at 556.936 GHz with the space telescope between 2002 and 2019, covering nearly two decades. We analyzed the data with a combination of 1D photochemical and radiative transfer models to constrain the vertical eddy diffusion in the stratosphere of Jupiter. Results. Odin observations show us that the emission of H2O has an almost linear decrease of about 40% between 2002 and 2019. We can only reproduce our time series if we increase the magnitude of Kzz in the pressure range where H2O diffuses downward from 2002 to 2019, that is, from ~0.2 mbar to ~5 mbar. However, this modified Kzz is incompatible with hydrocarbon observations. We find that even if an allowance is made for the initially large abundances of H2O and CO at the impact latitudes, the photochemical conversion of H2O to CO2 is not sufficient to explain the progressive decline of the H2O line emission, which is suggestive of additional loss mechanisms. Conclusions. The Kzz we derived from the Odin observations of H2O can only be viewed as an upper limit in the ~0.2 mbar to ~5 mbar pressure range. The incompatibility between the interpretations made from H2O and hydrocarbon observations probably results from 1D modeling limitations. Meridional variability of H2O, most probably at auroral latitudes, would need to be assessed and compared with that of hydrocarbons to quantify the role of auroral chemistry in the temporal evolution of the H2O abundance since the SL9 impacts. Modeling the temporal evolution of SL9 species with a 2D model would naturally be the next step in this area of study.
  •  
6.
  • Mousis, O., et al. (författare)
  • Key Atmospheric Signatures for Identifying the Source Reservoirs of Volatiles in Uranus and Neptune
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:5
  • Forskningsöversikt (refereegranskat)abstract
    • We investigate the enrichment patterns of several delivery scenarios of the volatiles to the atmospheres of ice giants, having in mind that the only well constrained determination made remotely, namely the carbon abundance measurement, suggests that their envelopes possess highly supersolar metallicities, i.e., close to two orders of magnitude above that of the protosolar nebula. In the framework of the core accretion model, only the delivery of volatiles in solid forms (amorphous ice, clathrates, pure condensates) to these planets can account for the apparent supersolar metallicity of their envelopes. In contrast, because of the inward drift of icy particles through various snowlines, all mechanisms invoking the delivery of volatiles in vapor forms predict subsolar abundances in the envelopes of Uranus and Neptune. Alternatively, even if the disk instability mechanism remains questionable in our solar system, it might be consistent with the supersolar metallicities observed in Uranus and Neptune, assuming the two planets suffered subsequent erosion of their H-He envelopes. The enrichment patterns derived for each delivery scenario considered should be useful to interpret future in situ measurements by atmospheric entry probes.
  •  
7.
  •  
8.
  • Cavalie, T., et al. (författare)
  • Observation of water vapor in the stratosphere of Jupiter with the Odin space telescope
  • 2008
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633. ; 56:12, s. 1573-1584
  • Tidskriftsartikel (refereegranskat)abstract
    • The water vapor line at 557 GHz has been observed with the Odin space telescope with a high signal-to-noise ratio and a high spectral resolution on November 8, 2002. The analysis of this observation as well as a re-analysis of previously published observations obtained with the submillimeter wavelength astronomy satellite seem to favor a cometary origin (Shoemaker-Levy 9) for water in the stratosphere of Jupiter, in agreement with the ISO observation results. Our model predicts that the water line should become fainter and broader from 2007. The observation of such a temporal variability would be contradictory with an IDP steady flux, thus supporting the SL9 source hypothesis. © 2008 Elsevier Ltd.
  •  
9.
  • Cavalie, T., et al. (författare)
  • Odin space telescope monitoring of water vapor in the stratosphere of Jupiter
  • 2012
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 61:1, s. 3-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The Odin space telescope has monitored the H2O (1(10)-1(01)) line in Jupiter's stratosphere over the 2003-2009 period. When comparing these data with previous spectra obtained with SWAS and Odin over the 1999-2002 period, we see no significant variations in the line-to-continuum ratio of the H2O line over the whole period. We have however tentatively identified a decrease by similar to 15% of the line-to-continuum ratio between 2002 and 2007-2009, indicating that there was less H2O in the stratosphere of Jupiter in 2007-2009 than anticipated. We have tested the IDP (interplanetary dust particles) and SL9 (Shoemaker-Levy 9) 1D time-dependent models presented in Cavalie et al. [2008, Observation of water vapor in the stratosphere 613 of Jupiter with the Odin space telescope. Planetary and Space Science 56,1573-1584]. We present a series of scenarios that lead to satisfactory fits of the whole data set (1999-2002 and 2003-2009 periods) based on IDP and SL9 models. The evolution of Jupiter's stratospheric H2O that we have tentatively observed has however to be confirmed by Herschel/HIFI observations. If the decrease of the line-to-continuum ratio is confirmed by future observations, it would be a direct evidence that Jupiter's H2O comes from SW. In addition, this study shows that new constraints on Jupiter's eddy diffusion coefficient profile could be obtained (in the pressure ranges that are probed) from the monitoring of SW species in its stratosphere.
  •  
10.
  • Walker, Christopher K., et al. (författare)
  • Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): “Following water from galaxies, through protostellar systems, to oceans”
  • 2021
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11820
  • Konferensbidrag (refereegranskat)abstract
    • Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) is a space-based, MIDEX-class mission concept that employs a 17-meter diameter inflatable aperture with cryogenic heterodyne receivers, enabling high sensitivity and high spectral resolution (resolving power >106) observations at terahertz frequencies. OASIS science is targeting submillimeter and far-infrared transitions of H2O and its isotopologues, as well as deuterated molecular hydrogen (HD) and other molecular species from 660 to 80 µm, which are inaccessible to ground-based telescopes due to the opacity of Earth’s atmosphere. OASIS will have >20x the collecting area and ~5x the angular resolution of Herschel, and it complements the shorter wavelength capabilities of the James Webb Space Telescope. With its large collecting area and suite of terahertz heterodyne receivers, OASIS will have the sensitivity to follow the water trail from galaxies to oceans, as well as directly measure gas mass in a wide variety of astrophysical objects from observations of the ground-state HD line. OASIS will operate in a Sun-Earth L1 halo orbit that enables observations of large numbers of galaxies, protoplanetary systems, and solar system objects during the course of its 1-year baseline mission. OASIS embraces an overarching science theme of “following water from galaxies, through protostellar systems, to oceans.” This theme resonates with the NASA Astrophysics Roadmap and the 2010 Astrophysics Decadal Survey, and it is also highly complementary to the proposed Origins Space Telescope’s objectives.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy