SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cavieres Lohengrin A.) "

Sökning: WFRF:(Cavieres Lohengrin A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lembrechts, Jonas J., et al. (författare)
  • Mountain roads shift native and non-native plant species' ranges
  • 2017
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 40:3, s. 353-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Roads are known to act as corridors for dispersal of plant species. With their variable microclimate, role as corridors for species movement and reoccurring disturbance events, they show several characteristics that might influence range dynamics of both native and non-native species. Previous research on plant species ranges in mountains however seldom included the effects of roads. To study how ranges of native and non-native species differ between roads and adjacent vegetation, we used a global dataset of plant species composition along mountain roads. We compared average elevation and range width of species, and used generalized linear mixed models (GLMMs) to compile their range optimum and amplitude. We then explored differences between roadside and adjacent plots based on a species' origin (native vs non-native) and nitrogen and temperature affinity. Most non-native species had on average higher elevational ranges and broader amplitudes in roadsides. Higher optima for non-native species were associated with high nitrogen and temperature affinity. While lowland native species showed patterns comparable to those in non-native species, highland native species had significantly lower elevational ranges in roadsides compared to the adjacent vegetation. We conclude that roadsides indeed change the elevational ranges of a variety of species. These changes are not limited to the expansion of non-native species along mountain roads, but also include both upward and downward changes in ranges of native species. Roadsides may thus facilitate upward range shifts, for instance related to climate change, and they could serve as corridors to facilitate migration of alpine species between adjacent high-elevation areas. We recommend including the effects of mountain roads in species distribution models to fine-tune the predictions of range changes in a warming climate.
  •  
2.
  • Cavieres, Lohengrin A., et al. (författare)
  • Facilitative plant interactions and climate simultaneously drive alpine plant diversity
  • 2014
  • Ingår i: Ecology Letters. - : Wiley. - 1461-0248 .- 1461-023X. ; 17:2, s. 193-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a ‘safety net’ sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.
  •  
3.
  • Kikvidze, Zaal, et al. (författare)
  • The effects of foundation species on community assembly: a global study on alpine cushion plant communities
  • 2015
  • Ingår i: Ecology. - : Ecological Society of America. - 0012-9658. ; 96:8, s. 2064-2069
  • Tidskriftsartikel (refereegranskat)abstract
    • Foundation species can change plant community structure by modulating important ecological processes such as community assembly, yet this topic is poorly understood. In alpine systems, cushion plants commonly act as foundation species by ameliorating local conditions. Here, we analyze diversity patterns of species' assembly within cushions and in adjacent surrounding open substrates (83 sites across five continents) calculating floristic dissimilarity between replicate plots, and using linear models to analyze relationships between microhabitats and species diversity. Floristic dissimilarity did not change across biogeographic regions, but was consistently lower in the cushions than in the open microhabitat. Cushion plants appear to enable recruitment of many relatively stress-intolerant species that otherwise would not establish in these communities, yet the niche space constructed by cushion plants supports a more homogeneous composition of species than the niche space beyond the cushion's influence. As a result, cushion plants support higher α-diversity and a larger species pool, but harbor assemblies with lower ?-diversity than open microhabitats. We conclude that habitats with and without dominant foundation species can strongly differ in the processes that drive species recruitment, and thus the relationship between local and regional species diversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy