SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cederwall Bo Professor) "

Sökning: WFRF:(Cederwall Bo Professor)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aktas, Özge (författare)
  • Gamma-ray Spectroscopy ofNeutron-rich 111 Mo, 85,87 Ge andSelf-Conjugate 88 Ru Far From Stability
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The neutron-deficient self-conjugate (N=Z) nucleus 8844 Ru 44 was populatedvia the heavy ion fusion evaporation reaction 54 Fe( 36 Ar, 2n) 88 Ru in an ex-periment performed at the GANIL accelerator laboratory in France. Usingthe AGATA γ-ray spectrometer together with ancillary detectors, promptγ − γ − 2n coincidence and charge particle anticoincidence analysis was per-formed for the low-lying energy spectrum of 88 Ru. The results confirm thepreviously assigned γ-ray cascade and extend it to the 14 + level. The levelscheme is consistent with a deformed rotational system. However, the rota-tional frequency of the alignment of the valence nucleons has a significantlyhigher value than what is predicted by theoretical calculations performedwithout isoscalar neutron-proton pairing. By including isoscalar pairing, anagrement is obtained with the experimentally observed delayed rotationalalignment.Excited states in the neutron-rich nuclei 109 Mo and 111 Mo were studiedfollowing nucleon knock-out reactions. Seven γ-ray transitions, some of themin prompt mutual coincidence, were identified for the first time in 111 Mo usingthe DALI2 and MINOS detector systems at the BigRIPS and ZeroDegree elec-tromagnetic fragment separator at the RIBF, RIKEN, Japan. Total Routhiansurface (TRS) and Particle-Plus-Rotor calculations have been performed toinvestigate the predicted shape coexistence and its effect on the structure ofnuclei in this region of the nuclear chart. Following the results of the calcula-tions, theoretical level schemes are proposed for positive and negative paritystates and compared with the experimental findings.Gamma-ray transitions have been identified for the first time in the ex-tremely neutron-rich (N = Z + 25) nucleus 87 Ge following nucleon knockoutreactions studied at the RIBF, RIKEN, Japan. Previously unknown γ-raytransitions between excited states in 85 Ge were also observed and placed ina tentative level scheme. The results are compared with large-scale shell-model calculations and potential energy surface calculations based on thetotal Routhian surface formalism. The neutron-rich titanium isotopes havebeen studied, and preliminary results are presented in this work. For the odd-even 57,59,61 Ti isotopes several gamma-ray transitions has been identified forthe first time. For the even-even isotopes 56,58,60 Ti the previously knowndecays from 2 + and 4 + spin-parity states, are confirmed with the currentpreliminary analysis.
  •  
2.
  • Ertoprak, Aysegul, 1987- (författare)
  • Experimental Studies of the Neutron Deficient Atomic Nuclei 94Ru, 95Rh and 172Pt via their Electromagnetic Properties : Du som saknar dator/datorvana kan kontakta Pär Olsson, polsson@kth.se för information
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis reports new results obtained from studies of the neutron deficient atomic nuclei 94Ru, 95Rh and 172Pt using two different experimental set-ups. In the first part, lifetimes of highly excited states in nuclei near the N=50 closed-shell (94Ru and 95Rh) were deduced from an analysis of the Doppler broadened transition lineshapes measured following the 58Ni(40Ca,4p) and 58Ni(40Ca,3p) fusion-evaporation reactions at the Grand Accelerateur National d'Ions Lourds (GANIL) accelerator complex situated in Caen, France. Doppler Shift Attenuation Method (DSAM) lifetime analysis was performed on the Doppler broadened peaks in energy spectra from γ-rays emitted from excited states in the nuclei of interest while they were slowing down in a thick 6 mg/cm2 metallic 58Ni target. For 94Ru, eight excited-state lifetimes in the angular momentum range I= (13-20)h have been measured in total, five of which were determined for the first time. For the lifetime analysis of 95Rh, three lifetime values have been obtained. One of them, the lifetime of the 39/21- excited state, has been measured for the first time. In the other cases, the lifetimes of the previously measured 29/22- and 37/21- excited states have been obtained. The corresponding B(M1) and B(E2) reduced transition strengths have been deduced and are discussed within the framework of large-scale shell model (LSSM) calculations. In the second part, the extremely neutron deficient 172Pt nucleus has been studied. Excited states in 172Pt were populated using the 96Ru(78Kr,2p) and 92Mo(83Kr,3n) reactions at the Accelerator Laboratory of the University of Jyväskylä (JYFL), Finland. Prompt γ-rays were detected using the JUROGAM high-purity germanium detector array at the target position while the identification and decay spectroscopy of 172Pt was performed using the RITU gas-filled separator in conjunction with the GREAT spectrometer. The Recoil Decay Tagging (RDT) technique was used for the selection of prompt γ-rays. The known positive-parity band has been extended and the negative-parity structure has been established on top of the lowest member of the negative parity band which has now been firmly assigned as spin-parity 3-. Moreover, the newly observed E3 transition provides a link between the negative parity band with the ground state. The observations of this E3 transition together with several E1 transitions connecting the negative-parity structure with the ground-state band is consistent with the presence of octupole collectivity in 172Pt. Furthermore, this is the first observation of an E3 transition connecting the negative parity band with the ground-state band in the Pt-Os-W region. The experimental results were interpreted in terms of LSSM and total routhian surface calculations. With the support of these theoretical calculations, evidence for octupole collectivity in 172Pt is proposed.
  •  
3.
  • Ghazi Moradi, Farnaz, 1976- (författare)
  • Experimental Nuclear Structure Studies in the Vicinityof the N = Z Nucleus 100Sn and in the ExtremelyNeutron Deficient 162Ta Nucleus
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This work covers spectroscopic studies of nuclei from different regions of the Segré chart whose properties illustrate the delicate balance between the forces in the atomic nucleus. Studies of nuclei far from stability offer new insights into the complex nucleon many-body problem. In nuclei with equal neutron and proton numbers (N = Z), the unique nature of the atomic nucleus as an object composed of two distinct types of fermions can be expressed as enhanced correlations arising between neutrons and protons occupying orbitals with the same quantum numbers. The bound N = Z nuclei with mass number A > 90 can only be produced in the laboratory at very low cross sections. The related problems of identifying and distinguishing such reaction products and their associated gamma rays have prevented a firm interpretation of their structure even for the lowest excited states until recently. In the present work the experimental difficulties of observation of excited states in the N = Z = 46 nucleus 92Pd have been overcome through the use of a highly efficient, state-of-the-art detector system; the EXOGAM-Neutron Wall-DIAMANT setup, and a prolonged experimental running period. The level spacings in the ground state band of 92Pd give the first experimental evidence for a new spin-aligned neutron-proton (np) paired phase, an unexpected effect of enhanced np correlations for N = Z nuclei in the immediate vicinity of the doubly magic nucleus 100Sn.Excited states in 94Ru and 95Rh nuclei close to the double magic shell  Z = N = 50 have been studied in order to untangle the ambiguity of the spin and the parity of the lowest-lying states. The observed yrast structures are compared to results of large-scale shell model (LSSM) calculations and the strengths of hindered E1 transitions are used as a sensitive test of the LSSM parameters. The effect of single-particle-hole excitations is discussed in terms of the strength of hindered E1 transitions.Excited states of the odd-odd nucleus 162Ta have been observed using the JUROGAM/RITU experimental set-up. This nucleus is located in a transitional region in the nuclide chart which is between near-spherical nuclei and well-deformed nuclei, offering the possibility to study the emergence of collective phenomena and nuclear deformation (in particular the degree of triaxiality). The results, which are interpreted in the framework of the cranked shell model with total Routhian surface calculations, suggest an almost axially symmetric nuclear shape. The energy staggering between the signature partners of the yrast rotational bands has been deduced for eight odd-odd isotopes in the neighborhood of 162Ta nucleus and the special observed feature of signature inversion for these nuclei is discussed.
  •  
4.
  • Andgren, Karin, 1979- (författare)
  • Studies of collective phenomena in neutron deficient nuclei : by means of lifetime measurements, angular correlation measurements and the recoil-decay tagging technique
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The nucleus is a mesoscopic system that retains features from both the quantum and macroscopic worlds. A basic property of a macroscopic body is its shape. Nuclear shapes can be deduced from experimental data as they influence the excitation mode of the nucleus and hence the energies and lifetimes of its excited levels. Various short-lived nuclei were created in fusion-evaporation experiments performed at international heavy-ion accelerator facilities. The emitted γ rays and, in some experiments, also the charged particles and neutrons emitted in the reactions were detected. The studied neutron-deficient isotopes were either selected by the type and number of particles emitted in the reactions, or by using their characteristic decays. The excited states of the different isotopes were extracted from the γ-ray analyses. Spectroscopic properties, such as the lifetimes of the excited states or the angular distribution of the emitted γ rays were measured when possible. The experimentally obtained level schemes together with the other spectroscopic information were used to deduce the excitation modes and the shapes of the studied nuclei. The detector systems are described in the first chapter and in the second chapter some techniques used to extract information from the experimental data are explained. Finally, a brief theoretical overview on the nuclear models which were used to interpret the experimental results is given.
  •  
5.
  • Ertoprak, Aysegul, 1987- (författare)
  • Lifetime Measurements of Excited States in the Semi-Magic Nucleus 94Ru
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lifetimes of highly excited states in the semi-magic (N=50) nucleus 94Ru were deduced from an analysis of the Doppler broadened transition line shapes. Excited states in 94Ru were populated in the 58Ni(40Ca, 4p)94Ru∗ fusion-evaporation reaction at the Grand Accélérateur National d’Ions Lourds (GANIL) accelerator complex situated in Caen, France. Doppler Shift Attenuation Method (DSAM) lifetime analysis was performed on the Doppler broadened peaks in energy spectra from γ-rays emitted while the residual nuclei were slowing down in a thick 6 mg/cm2 metallic 58Ni target. In total eight excited-state lifetimes in the angular momentum range I = (13 − 20)ħ have been measured, five of which were determined for the first time. The deduced corresponding B(M1) and B(E2) reduced transition strengths are discussed within the framework of large-scale shell model calculations.
  •  
6.
  • Ghazi Moradi, Farnaz (författare)
  • In-Beam Spectroscopy of the Neutron Deficient Nuclei 92Pd and 162Ta
  • 2011
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Studies of nuclei far from stability offers new insights into the complete nucleon many-body problem. In nuclei with equal neutron and proton numbers (N=Z), the unique nature of the atomic nucleus as an object composed of two distinct types of fermions can be expressed as enhanced correlations arising between neutrons and protons occupying orbitals with the same quantum numbers. Such correlations have since several decades been predicted to favour a new type of nuclear superfluidity; isoscalar neutron-proton pairing, in addition to normal isovector pairing which dominates the structure of most known nuclei. Despite many experimental efforts these predictions have not been confirmed. The N=Z nuclei with mass number A>90 can only be produced in the laboratory at very low cross sections. The related problems of identifying and distinguishing such reaction products and their associated gamma rays from the vast array of N>Z nuclei that are present in much greater numbers have prevented observation of their low-lying excited states until recently. In the present work the experimental difficulties of observation of excited states in the N=Z=46 nucleus 92Pd have been overcome through the use of a highly efficient, state-of-the-art detector system and a prolonged experimental running period. The lowest excited states in 92Pd was empirically observed via detection of gamma rays emitted in the fusion-evaporation reaction together with detection of charged particles and neutrons in the ancillary detector system. The level spacings in the ground state band of 92Pd give the first experimental evidence for a new spin-aligned neutron-proton (np) paired phase. These findings reconcile with nuclear shell model calculations which predicts an unexpected effect of enhanced np correlations for N=Z nuclei in the immediate vicinity of the doubly magic nucleus 100Sn. Excited states of the odd-odd nucleus 162Ta have been observed using the JUROGAM/RITU experimental set-up. This nucleus is located in a transitional region in the nuclide chart which is between near-spherical nuclei and well-deformed nuclei, offering the possibility to study the emergence of collective phenomena and nuclear deformation (in particular the degree of triaxiality). The results, which are interpreted in the framework of the cranked shell model with total Routhian surface calculations suggest an almost axially symmetric nuclear shape. The energy staggering between the signature partners of the yrast rotational bands has been deduced for eight odd-odd isotopes in the neighborhood of 162Ta nucleus and the special observed feature of signature inversion for these nuclei is discussed.  
  •  
7.
  • Hadinia, Baharak (författare)
  • In-beam study of 106Te and 107Te using the recoil decay tagging technique
  • 2006
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Atomic nuclei are complex many-body systems and exhibit an interplay between single-particle and collective degrees of freedom. In order to describe and predict the “behavior” of nucleons inside the nuclei a variety of theoretical models have been created, each applicable to their own domain of nuclear phenomena. Experimental information is needed in order to test and improve the various theoretical models with the ultimate goal of creating unified theory of nuclear structure. In-beam γ-ray spectroscopy is one way of probing the inner structure of nuclei and it is the subject of this thesis, which describes the first identification of excited states in the extremely neutron deficient nuclei 106Te and 107Te. The experiments were performed at the Accelerator Laboratory of the University of Jyväskylä, Finland, using the recoil-decay tagging technique. Prompt γ rays emitted following fusion evaporation reactions were detected by the Jurogam detector array and the selection of the γ rays of interest was based on the recoil identification provided by the RITU gas-filled recoil separator and the GREAT focal plane spectrometer. The production cross sections were estimated to be 25nb and 1μb for 106Te and 107Te, respectively. In case of the nucleus 106Te, several γ rays have been observed. A vibrational-like yrast band has been suggested. For 107Te a number of γ rays have been assigned and a tentative partial level scheme has been suggested. The experimental data have been compared to shell model calculations.
  •  
8.
  • Li, Hongjie, 1988- (författare)
  • Collective Excitations in Transitional Nuclei Studied by Means of gamma-ray Spectroscopy and Lifetime Measurements
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Despite that it is more than 100 years since the atomic nucleus was first dis- covered by Ernest Rutherford and coworkers, many of its features still elude our understanding. The fact that the fundamental interactions between the nuclear constituents; nucleons, and ultimately quarks, are not yet known in detail, and the complexity of the nuclear many-body system compound the great challenges facing theoretical interpretations of experimental data. It is therefore important to focus on distinct phenomena where experimental mea- surements can be compared with theoretical predictions, providing stringent tests of theory. One such area is the nuclear phenomenology of collective excitations related to rotations and vibrations of the nucleus as a whole, and how such modes of excitation may develop from the interactions between a few nucleons occupying single-particle orbits outside closed shells.This thesis is devoted to experimental studies of excited states in the 99Tc, 162W, and 166Re nuclei. These nuclei lie in “transitional” regions of the Segrè chart, where collective excitation mechanisms start becoming important when adding valence nucleons outside closed neutron and proton shells. Such nuclei are important for testing state-of-the-art theoretical models. The excited states of the nuclei studied in the present work were populated using heavy-ion fusion-evaporation reactions. Prior to the present work, high-spin data were still lacking in 99Tc since in the previous works [1–5] excited states were only populated up to around 3 MeV. Two collective bands have been extended to intermediate angular momentum states in the present work. The experimental results were compared with the systematics of other technetium isotopes, evaluating electromagnetic characteristics based on semiclassical calculations and the particle-rotor model. The 162W and 166Re nuclei are situated in the very neutron-deficient 160-170 mass region, requiring special techniques for identifying their excited-state structures. The level scheme of 162W was first reported by Dracoulis et al. in 1993 [6], where the first excited 2+ state was assigned to be 450 keV above the ground state. However, the lack of selectivity made the γ-ray identification for higher energy levels of 162W uncertain. In this work, the highly selective recoil-decay tagging technique was used to uniquely identify γ-ray transitions from excited states in 162W and to construct its level scheme. In addition, the experimental setup enabled a precise determination of the half-life of the α-decaying ground state of 162W. The α-formation probability for 162W was extracted from the measurement of the half-life and systematical comparisons with the neighboring nuclei were performed. Two rotational-like bands were identified in 166Re for the first time and the lifetimes of the lowest three excited states in band (1) were measured using the recoil distance Doppler shift method. The results were compared with theoretical calculations based on a semiclassical approach, the particle-rotor model, and the tilted axis cranking model in a relativistic mean field approach. The microscopic mechanisms (configuration and alignment, etc) of the rotational bands were interpreted under the framework of total Routhian surface predictions and cranked shell model calculations. 
  •  
9.
  • Liu, Xiaoyu (författare)
  • Experimental Studies of the Neutron Deficient Atomic Nuclei 88Ru and 87Tc, and the Diagonalization of the General Pairing Hamiltonian
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This doctoral thesis consists of two parts: the experimental study of the neutron-deficient atomic nuclei 88Ru and 87Tc, and the computational study on the diagonalization of general pairing Hamiltonian. In the first part, which constitutes the main content of the thesis, the low-lying excited states in the N = Z nucleus 88Ru and N = Z + 1 nucleus 87Tc were studied via fusion-evaporation reactions induced by 115 MeV 36 Ar ions bombarding6 mg/cm 2 thick metallic 54 Fe target foils at the Grand Accélérateur Nationald’Ions Lourds (GANIL), Caen, France. The prompt γγ-neutron and charged-particle coincidences from the de-excitation of the reactions were measured by the AGATA γ-ray spectrometer coupled to the auxiliary NEDA, Neutron Wall, and DIAMANT detector arrays. The results for 88 Ru confirmed and extended the previous level scheme to a tentative (14+) state. The constructed level structure exhibits a moderately deformed rotational behavior but shows a band crossing at a significantly higher rotational frequency compared with neighboring nuclei with N > Z. Such band crossings are associated with quasiparticle alignment within the standard isovector pairing scheme. The observation of a “delayed” rotation alignment in the deformed N = Znucleus is consistent with theoretical predictions related to the existence of strong isoscalar neutron-proton pair condensate. The yrast band in 87 Tc from the (9/2+) state to the (33/2+) state was established based on six mutually coincident γ-ray transitions. The constructed yrast band exhibits a sharp backbending at ~ω ≈ 0.50 MeV. In the odd-A isotonic chains around N = 44, approaching the N = Z line, the observed decrease in alignment frequency and increase in alignment sharpness were proposed as an effect of the enhanced isoscalar neutron-proton interactions. In addition to the yrast band in 87 Tc, six new mutually coincident γ-ray transitions were identified by comparing the γ-ray intensities in the spectra gated under different reaction channel selection conditions. The constructed level scheme was compared with shell model and TRS calculations. The results indicate that these low-lying states exhibit spherical behavior different from the previously identified oblate yrast band, and the band might be built on a (7/2 +1 ) ground state.In the second part, an OpenMP parallel Fortran program, PairDiag, for the diagonalization of the general pairing Hamiltonian in deformed systems was developed. In the program, the ‘01’ inversion algorithm is used to generate the seniority-zero basis vectors; all the non-zero Hamiltonian matrix elements are evaluated “on the fly” by the scattering operators and a search algorithm; the matrix diagonalization is achieved by the Lanczos + QR algorithm. The PairDiag program is packaged in a Fortran module and can be easily used to replace the BCS approximation in other nuclear structure programs.
  •  
10.
  • Sandzelius, Mikael, 1969- (författare)
  • In-Beam Spectroscopy of the Extremely Neutron Deficient Nuclei 169Ir and 110Xe
  • 2007
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis describes new results obtained from experimental studies of the extremely neutron-deficient isotopes 169Ir and 110Xe, close to the proton drip-line. The experiments use state-of-the-art equipment for nuclear spectroscopy where a large high-resolution Germanium-detector array is coupled to a high-transmission recoil separator and using the highly selective recoil-decay tagging technique. The work is based on two experiments performed at the Accelerator Laboratory of the University of Jyväskylä, Finland. The experimental techniques used are described as are the experimental set-ups. Comparison between experimental results and theoretical predictions are made. The thesis also briefly summarises the theoretical models employed to interpret the experimental results. The results for 169Ir point to a rotational-like behaviour of a moderately deformed nucleus exhibiting triaxial shape. The experimental results do not fully agree with theoretical predictions for the shape evolution of the neutron-deficient iridium isotopes, approaching the proton drip-line. The results for 110Xe indicate an emergence of enhanced collectivity near the N=Z line in the region of the nuclear chart above 100Sn. These findings are interpreted as a possible effect of increased neutron-proton isoscalar pair correlations, a residual interaction effect not accounted for in present-day nuclear models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy