SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ceplitis H.) "

Sökning: WFRF:(Ceplitis H.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Tinker, N. A., et al. (författare)
  • New DArT markers for oat provide enhanced map coverage and global germplasm characterization
  • 2009
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 10:39
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genomic discovery in oat and its application to oat improvement have been hindered by a lack of genetic markers common to different genetic maps, and by the difficulty of conducting whole-genome analysis using high-throughput markers. This study was intended to develop, characterize, and apply a large set of oat genetic markers based on Diversity Array Technology (DArT). Results: Approximately 19,000 genomic clones were isolated from complexity-reduced genomic representations of pooled DNA samples from 60 oat varieties of global origin. These were screened on three discovery arrays, with more than 2000 polymorphic markers being identified for use in this study, and approximately 2700 potentially polymorphic markers being identified for use in future studies. DNA sequence was obtained for 2573 clones and assembled into a non-redundant set of 1770 contigs and singletons. Of these, 705 showed highly significant (Expectation < 10E-10) BLAST similarity to gene sequences in public databases. Based on marker scores in 80 recombinant inbred lines, 1010 new DArT markers were used to saturate and improve the 'Kanota' x 'Ogle' genetic map. DArT markers provided map coverage approximately equivalent to existing markers. After binning markers from similar clones, as well as those with 99% scoring similarity, a set of 1295 non-redundant markers was used to analyze genetic diversity in 182 accessions of cultivated oat of worldwide origin. Results of this analysis confirmed that major clusters of oat diversity are related to spring vs. winter type, and to the presence of major breeding programs within geographical regions. Secondary clusters revealed groups that were often related to known pedigree structure. Conclusion: These markers will provide a solid basis for future efforts in genomic discovery, comparative mapping, and the generation of an oat consensus map. They will also provide new opportunities for directed breeding of superior oat varieties, and guidance in the maintenance of oat genetic diversity.
  •  
4.
  • Slotte, T., et al. (författare)
  • Intrageneric phylogeny of Capsella (Brassicaceae) and the origin of the tetraploid C-bursa-pastoris based on chloroplast and nuclear DNA sequences
  • 2006
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 93:11, s. 1714-1724
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyploidization, often accompanied by hybridization, has been of major importance in flowering plant evolution. Here we investigate the importance of these processes for the evolution of the tetraploid crucifer Capsella bursa-pastoris using DNA sequences from two chloroplast loci as well as from three nuclear low-copy genes. The near-absence of variation at the C. bursa-pastoris chloroplast markers suggests a single and recent origin of the tetraploid. However, despite supporting a single phylogeny, chloroplast data indicate that neither of the extant Capsella diploids is the maternal parent of the tetraploid. Combined with data from the three nuclear loci, our results do not lend support to previous hypotheses on the origin of C. bursa-pastoris as an allopolyploid between the diploids C. grandiflora and C. rubella or an autopolyploid of C. grandiflora. Nevertheless, for each locus, some of the C. bursa-pastoris accessions harbored C. rubella alleles, indicating that C. rubella contributed to the gene pool of C. bursa-pastoris, either through allopolyploid speciation or, more likely, through hybridization and introgression. To our knowledge, this study is the first of a wild, nonmodel plant genus that uses a combination of chloroplast and multiple low-copy nuclear loci for phylogenetic inference of polyploid evolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy