SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ceroni Paola) "

Sökning: WFRF:(Ceroni Paola)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marin, Riccardo, et al. (författare)
  • Mercaptosilane-Passivated CuInS2 Quantum Dots for Luminescence Thermometry and Luminescent Labels
  • 2019
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 2:4, s. 2426-2436
  • Tidskriftsartikel (refereegranskat)abstract
    • Bright and nontoxic quantum dots (QDs) are highly desirable in a variety of applications, from solid-state devices to luminescent probes in assays. However, the processability of these species is often curbed by their surface chemistry, which limits their dispersibility in selected solvents. This renders a surface modification step often mandatory to make the QDs compatible with the solvent of interest. Here, we present a new synthetic approach to produce CuInS2 QDs compatible with organic polar solvents and readily usable for the preparation of composite materials. 3-Mercaptopropyl trimethoxysilane (MPTS) was used simultaneously as solvent, sulfur source, and capping agent for the QD synthesis. The synthesized QDs possessed a maximum photoluminescence quantum yield around 6%, reaching approximately 55% after growing a ZnS shell. The partial condensation of MPTS molecules on the surface of QDs was probed by solid-state nuclear magnetic resonance, whose results were used to interpret the interaction of the QDs with different solvents. To prove the versatility of the developed QDs, imparted by the thiolated silane molecules, we prepared via straightforward procedures two nanocomposites of practical interest: (i) silica nanoparticles decorated with QDs and (ii) an inexpensive polymeric film with embedded QDs. We further demonstrate the potential of this composite film as a luminescence thermometer operational over a broad temperature interval, with relative thermal sensitivity above 1% K–1 in the range of biological interest.
  •  
2.
  • Mazzaro, Raffaello, et al. (författare)
  • Hematite nanostructures : An old material for a new story. Simultaneous photoelectrochemical oxidation of benzylamine and hydrogen production through Ti doping
  • 2019
  • Ingår i: Nano Energy. - : Elsevier. - 2211-2855 .- 2211-3282. ; 61, s. 36-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Overall water splitting represents one of the most promising approaches toward solar energy conversion and storage, which is, however, severely challenged by the four-electron/four-proton nature of the oxygen evolution reaction (OER). One option to overcome this issue is to replace OER with a more useful reaction, for simultaneous production of both hydrogen and chemicals of interest. For the purpose, in this paper a cheap, hydrothermally prepared Ti-doped nanostructured hematite photoanode was employed for the first time as highly stable, heterogeneous catalyst for the low bias, efficient and highly selective photoinduced oxidation of benzylamine to N-benzylidenebenzylamine, and for the simultaneous production of hydrogen in a double solvent/environment cell. A preliminary estimate indicates the possibility to obtain a ∼150 μmol h−1 H2 production, with the contemporary production of stoichiometric benzylidene N-benzylamine in a 5 × 5 cm2 area electrode. This study contributes to overcome the 40-year lasting issues limiting the use of hematite in industrial photoelectrochemical sunlight conversion and storage, due to poor performance of hematite and lack of economic value of oxygen production, providing solid evidence for the simultaneous use of hematite in hydrogen production and alternative oxidation reactions of industrial importance.
  •  
3.
  • Mazzaro, Raffaello, et al. (författare)
  • Hybrid Silicon Nanocrystals for Color-Neutral and Transparent Luminescent Solar Concentrators
  • 2019
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 6:9, s. 2303-2311
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most detrimental loss mechanisms in Luminescent Solar Concentrators (LSCs) is reabsorption of emitted light from the luminophore. Silicon Nanocrystals (SiNCs) offer a solution due to the high apparent Stokes shift, but the poor absorption properties limit their performance as LSC luminophores. Coupling an organic dye to SiNCs represents a smart approach to obtain sensitization of SiNC luminescence by the organic dyes, thus, resulting in tunable and improved optical properties of LSCs. In particular, 9,10-diphenylanthracene was employed as a UV sensitizer for SiNCs in order to produce LSCs with an aesthetic appearance suitable to smart window application and optical efficiency as high as 4.25%. In addition, the role of the energy transfer process on LSC performance was elucidated by a thorough optical and photovoltaic characterization.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy