SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cewe P) "

Sökning: WFRF:(Cewe P)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cewe, P, et al. (författare)
  • Evaluation of a Novel Teleradiology Technology for Image-Based Distant Consultations: Applications in Neurosurgery
  • 2021
  • Ingår i: Diagnostics (Basel, Switzerland). - : MDPI AG. - 2075-4418. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • In emergency settings, fast access to medical imaging for diagnostic is pivotal for clinical decision making. Hence, a need has emerged for solutions that allow rapid access to images on small mobile devices (SMD) without local data storage. Our objective was to evaluate access times to full quality anonymized DICOM datasets, comparing standard access through an authorized hospital computer (AHC) to a zero-footprint teleradiology technology (ZTT) used on a personal computer (PC) or SMD using national and international networks at a regional neurosurgical center. Image datasets were sent to a senior neurosurgeon, outside the hospital network using either an AHC and a VPN connection or a ZTT (Image Over Globe (IOG)), on a PC or an SMD. Time to access DICOM images was measured using both solutions. The mean time using AHC and VPN was 250 ± 10 s (median 249 s (233–274)) while the same procedure using IOG took 50 ± 8 s (median 49 s (42–60)) on a PC and 47 ± 20 s (median 39 (33–88)) on a SMD. Similarly, an international consultation was performed requiring 23 ± 5 s (median 21 (16–33)) and 27 ± 1 s (median 27 (25–29)) for PC and SMD respectively. IOG is a secure, rapid and easy to use telemedicine technology facilitating efficient clinical decision making and remote consultations.
  •  
2.
  • Cewe, P, et al. (författare)
  • Radiation distribution in a hybrid operating room, utilizing different X-ray imaging systems: investigations to minimize occupational exposure
  • 2022
  • Ingår i: Journal of neurointerventional surgery. - : BMJ. - 1759-8486 .- 1759-8478. ; 14:11, s. 1139-1144
  • Tidskriftsartikel (refereegranskat)abstract
    • To reduce occupational radiation exposure in a hybrid operating room (OR) used for three-dimensional (3D) image guided spine procedures. The effects of staff positioning, different X-ray imaging systems, and freestanding radiation protection shields (RPSs) were considered.MethodsAn anthropomorphic phantom was imaged with a robotic ceiling mounted hybrid OR C-arm cone beam CT (hCBCT), a mobile O-arm CBCT (oCBCT), and a mobile two-dimensional C-arm fluoroscopy system. The resulting scatter doses were measured at different positions in the hybrid OR using active personal dosimeters and an ionization chamber. Two types of RPSs were evaluated.ResultsUsing the hCBCT system instead of the oCBCT system reduced the occupational radiation dose on average by 22%. At 200 cm from the phantom, scatter doses from the hCBCT were 27% lower compared with the oCBCT. One rotational acquisition with hCBCT or oCBCT corresponded to 12 or 16 min of fluoroscopy with the C-arm, respectively. The scatter dose decreased by more than 90% behind an RPS. However, the protection was slightly less effective at 60 cm behind the RPS, due to tertiary scatter from the surroundings.ConclusionsFor 3D image guided spine procedures in the hybrid OR, occupational radiation exposure is lowered by using hCBCT rather than oCBCT. Radiation exposure can also be decreased by optimal staff positioning in the OR, considering distance to the source and positioning relative to the walls, ceiling, and RPS. In this setting and workflow, staff can use RPSs instead of heavy aprons during intraoperative CBCT imaging, to achieve effective whole body dose reduction with improved comfort.
  •  
3.
  • Frisk, H, et al. (författare)
  • Feasibility and Accuracy of Thoracolumbar Pedicle Screw Placement Using an Augmented Reality Head Mounted Device
  • 2022
  • Ingår i: Sensors (Basel, Switzerland). - : MDPI AG. - 1424-8220. ; 22:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: To investigate the accuracy of augmented reality (AR) navigation using the Magic Leap head mounted device (HMD), pedicle screws were minimally invasively placed in four spine phantoms. Methods: AR navigation provided by a combination of a conventional navigation system integrated with the Magic Leap head mounted device (AR-HMD) was used. Forty-eight screws were planned and inserted into Th11-L4 of the phantoms using the AR-HMD and navigated instruments. Postprocedural CT scans were used to grade the technical (deviation from the plan) and clinical (Gertzbein grade) accuracy of the screws. The time for each screw placement was recorded. Results: The mean deviation between navigation plan and screw position was 1.9 ± 0.7 mm (1.9 [0.3–4.1] mm) at the entry point and 1.4 ± 0.8 mm (1.2 [0.1–3.9] mm) at the screw tip. The angular deviation was 3.0 ± 1.4° (2.7 [0.4–6.2]°) and the mean time for screw placement was 130 ± 55 s (108 [58–437] s). The clinical accuracy was 94% according to the Gertzbein grading scale. Conclusion: The combination of an AR-HMD with a conventional navigation system for accurate minimally invasive screw placement is feasible and can exploit the benefits of AR in the perspective of the surgeon with the reliability of a conventional navigation system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy