SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chabrerie O) "

Sökning: WFRF:(Chabrerie O)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Caron, M. M., et al. (författare)
  • Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change
  • 2015
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 342, s. 21-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Changing temperature and precipitation can strongly influence plant reproduction. However, also biotic interactions might indirectly affect the reproduction and recruitment success of plants in the context of climate change. Information about the interactive effects of changes in abiotic and biotic factors is essential, but still largely lacking, to better understand the potential effects of a changing climate on plant populations. Here we analyze the regeneration from seeds of Acer platanoides and Acer pseudoplatanus, two currently secondary forest tree species from seven regions along a 2200 km-wide latitudinal gradient in Europe. We assessed the germination, seedling survival and growth during two years in a common garden experiment where temperature, precipitation and competition with the understory vegetation were manipulated. A. platanoides was more sensitive to changes in biotic conditions while A. pseudoplatanus was affected by both abiotic and biotic changes. In general, competition reduced (in A. platanoides) and warming enhanced (in A. pseudoplatanus) germination and survival, respectively. Reduced competition strongly increased the growth of A. platanoides seedlings. Seedling responses were independent of the conditions experienced by the mother tree during seed production and maturation. Our results indicate that, due to the negative effects of competition on the regeneration of A. platanoides, it is likely that under stronger competition (projected under future climatic conditions) this species will be negatively affected in terms of germination, survival and seedling biomass. Climate-change experiments including both abiotic and biotic factors constitute a key step forward to better understand the response of tree species' regeneration to climate change.
  •  
2.
  • Caron, M. M., et al. (författare)
  • Impacts of warming and changes in precipitation frequency on the regeneration of two Acer species
  • 2015
  • Ingår i: Flora. - : Elsevier BV. - 0367-2530 .- 1618-0585. ; 214, s. 24-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate projections indicate that temperatures will increase by up to 4.5 degrees C in Europe by the end of this century, and that more extreme rainfall events and longer intervening dry periods will take place. Climate change will likely affect all phases of the life cycle of plants, but plant reproduction has been suggested to be especially sensitive. Here, using a combination of approaches (soil heaters and different provenances along a latitudinal gradient), we analyzed the regeneration from seeds of Acer platanoides and A. pseudoplatanus, two tree species considered, from a management point of view, of secondary relevance. We studied germination, seedling survival and growth in a full-factorial experiment including warming and changes in watering frequency. Both species responded to warming, watering frequency and seed provenance, with stronger (negative) effects of warming and provenance than of watering frequency. In general, the central provenances performed better than the northernmost and southern-most provenances. We also detected interactive effects between warming, watering frequency and/or seed provenance. Based on these results, both species are expected to show dissimilar responses to the changes in the studied climatic factors, but also the impacts of climate change on the different phases of plant regeneration may differ in direction and magnitude. In general increases in the precipitation, frequency will stimulate germination while warming will reduce survival and growth. Moreover, the frequent divergent responses of seedlings along the latitudinal gradient suggest that climate change will likely have heterogeneous impacts across Europe, with stronger impacts in the northern and southern parts of the species' distribution ranges.
  •  
3.
  • Caron, M. M., et al. (författare)
  • Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides
  • 2015
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 17:1, s. 52-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life-cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A.platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200-km long latitudinal gradient. For most of the responses, A.platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A.platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A.pseudoplatanus in the face of climate change.
  •  
4.
  • Caron, M. M., et al. (författare)
  • Latitudinal variation in seeds characteristics of Acer platanoides and A. pseudoplatanus
  • 2014
  • Ingår i: Plant Ecology. - : Springer Science and Business Media LLC. - 1385-0237 .- 1573-5052. ; 215:8, s. 911-925
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change will likely affect population dynamics of numerous plant species by modifying several aspects of the life cycle. Because plant regeneration from seeds may be particularly vulnerable, here we assess the possible effects of climate change on seed characteristics and present an integrated analysis of seven seed traits (nutrient concentrations, samara mass, seed mass, wing length, seed viability, germination percentage, and seedling biomass) of Acer platanoides and A. pseudoplatanus seeds collected along a wide latitudinal gradient from Italy to Norway. Seed traits were analyzed in relation to the environmental conditions experienced by the mother trees along the latitudinal gradient. We found that seed traits of A. platanoides were more influenced by the climatic conditions than those of A. pseudoplatanus. Additionally, seed viability, germination percentage, and seedling biomass of A. platanoides were strongly related to the seed mass and nutrient concentration. While A. platanoides seeds were more influenced by the environmental conditions (generally negatively affected by rising temperatures), compared to A. pseudoplatanus, A. platanoides still showed higher germination percentage and seedling biomass than A. pseudoplatanus. Thus, further research on subsequent life-history stages of both species is needed. The variation in seed quality observed along the climatic gradient highlights the importance of studying the possible impact of climate change on seed production and species demography.
  •  
5.
  • De Frenne, P., et al. (författare)
  • A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa
  • 2011
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 13:3, s. 493-501
  • Tidskriftsartikel (refereegranskat)abstract
    • The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours > 5 degrees C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success.
  •  
6.
  • De Frenne, P., et al. (författare)
  • Atmospheric nitrogen deposition on petals enhances seed quality of the forest herb Anemone nemorosa
  • 2018
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 20:3, s. 619-626
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated atmospheric input of nitrogen (N) is currently affecting plant biodiversity and ecosystem functioning. The growth and survival of numerous plant species is known to respond strongly to N fertilisation. Yet, few studies have assessed the effects of N deposition on seed quality and reproductive performance, which is an important life-history stage of plants. Here we address this knowledge gap by assessing the effects of atmospheric N deposition on seed quality of the ancient forest herb Anemone nemorosa using two complementary approaches. By taking advantage of the wide spatiotemporal variation in N deposition rates in pan-European temperate and boreal forests over 2years, we detected positive effects of N deposition on the N concentration (percentage N per unit seed mass, increased from 2.8% to 4.1%) and N content (total N mass per seed more than doubled) of A.nemorosa seeds. In a complementary experiment, we applied ammonium nitrate to aboveground plant tissues and the soil surface to determine whether dissolved N sources in precipitation could be incorporated into seeds. Although the addition of N to leaves and the soil surface had no effect, a concentrated N solution applied to petals during anthesis resulted in increased seed mass, seed N concentration and N content. Our results demonstrate that N deposition on the petals enhances bioaccumulation of N in the seeds of A.nemorosa. Enhanced atmospheric inputs of N can thus not only affect growth and population dynamics via root or canopy uptake, but can also influence seed quality and reproduction via intake through the inflorescences.
  •  
7.
  • De Frenne, P, et al. (författare)
  • Significant effects of temperature on the reproductive output of the forest herb Anemone nemorosa L.
  • 2010
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 259:4, s. 809-817
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming is already influencing plant migration in different parts of the world.Numerous modelshave been developed to forecast future plant distributions. Few studies, however, have investigated thepotential effect of warming on the reproductive output of plants. Understorey forest herbs in particular,have received little attention in the debate on climate change impacts.This study focuses on the effect of temperature on sexual reproductive output (number of seeds, seedmass, germination percentage and seedling mass) of Anemone nemorosa L., a model species for slowcolonizing herbaceous forest plants. We sampled seeds of A. nemorosa in populations along a 2400 kmlatitudinal gradient from northern France to northern Sweden during three growing seasons (2005, 2006and 2008). This study design allowed us to isolate the effects of accumulated temperature (GrowingDegree Hours; GDH) from latitude and the local abiotic and biotic environment. Germination and seedsowing trials were performed in incubators, a greenhouse and under field conditions in a forest. Finally,we disentangled correlations between the different reproductive traits of A. nemorosa along thelatitudinal gradient.We found a clear positive relationship between accumulated temperature and seed and seedlingtraits: reproductive output of A. nemorosa improved with increasing GDH along the latitudinal gradient.Seedmass and seedling mass, for instance, increased by 9.7% and 10.4%, respectively, for every 1000 8C hincrease in GDH.Wealso derived strong correlations between several seed and seedling traits both underfield conditions and in incubators. Our results indicate that seed mass, incubator-based germinationpercentage (Germ%Inc) and the output of germinable seeds (product of number of seeds and Germ%Incdivided by 100) from plants grown along a latitudinal gradient (i.e. at different temperature regimes)provide valuable proxies to parameterize key population processes in models.We conclude that (1) climate warming may have a pronounced positive impact on sexualreproduction of A. nemorosa and (2) climate models forecasting plant distributions would benefit fromincluding the temperature sensitivity of key seed traits and population processes.
  •  
8.
  • De Frenne, P, et al. (författare)
  • Unraveling the effects of temperature, latitude and local environment on the reproduction of six forest herbs.
  • 2009
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 18:6, s. 641-651
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim To investigate the effect of temperature, latitude and local environment on the reproductive traits of widespread perennial forest herbs to better understand the potential impacts of rising temperatures on their population dynamics and colonization capacities.Location Six regions along a latitudinal gradient from France to Sweden.Methods Within each region, we collected data from three to five populations of up to six species. For each species, several variables were recorded in each region (temperature, latitude) and population (local abiotic and biotic environmental variables), and seed production and germination were estimated. Resource investment in reproduction (RIR) was quantified as seed number × seed mass, while germinable seed output (GSO) was expressed as seed number × germination percentage. We performed linear regression and mixed effect models to investigate the effects of temperature (growing degree hours), latitude and local abiotic and biotic environment on RIR and GSO.Results Temperature and latitude explained most of the variation in RIR and GSO for early flowering species with a northerly distribution range edge (Anemone nemorosa, Paris quadrifolia and Oxalis acetosella). Reproduction of the more southerly distributed species (Brachypodium sylvaticum, Circaea lutetiana and Primula elatior), in contrast, was independent of temperature/latitude. In the late summer species, B. sylvaticum and C. lutetiana, variation in RIR and GSO was best explained by local environmental variables, while none of the investigated variables appeared to be related to reproduction in P. elatior.Main conclusions We showed that reproduction of only two early flowering, northerly distributed species was related to temperature. This suggests that the potential reproductive response of forest herbs to climate warming partly depends on their phenology and distribution, but also that the response is to some extent species dependent. These findings should be taken into account when predictions about future shifts in distribution range are made.
  •  
9.
  • Acharya, Kamal Prasad, et al. (författare)
  • Latitudinal variation of life-history traits of an exotic and a native impatiens species in Europe
  • 2017
  • Ingår i: Acta Oecologica. - : Elsevier BV. - 1146-609X .- 1873-6238. ; 81, s. 40-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the responses of invasive and native populations to environmental change is crucial for reliable predictions of invasions in the face of global change. While comparisons of responses across invasive species with different life histories have been performed before, comparing functional traits of congeneric native and invasive species may help to reveal driving factors associated with invasion. Here we compared morphological functional trait patterns of an invasive species (Impatiens parviflora) with its congeneric native species (I. noli-tangere) along an approximately 1600 km European latitudinal gradient from France (49 degrees 34'N) to Norway (63 degrees 40'N). Soil nitrogen was recorded during six weeks of the growing season, and light, soil moisture, and nutrient availability were estimated for each sampled population using community weighted means of indicator values for co-occurring species. Temperature data were gathered from nearby weather stations. Both the native and invasive species are taller at higher latitudes and this response is strongest in the invasive species. Seed mass and number of seeds per capsule increase in I. noli-tangere but decrease in I. parviflora towards higher latitudes. Surprisingly, plant height in the invasive I. parviflora decreases with increasing soil nitrogen availability. The latitudinal pattern in seed mass is positively related to temperature in I. noli-tangere and negatively in I. parviflora. Leaf area of both species decreases with increasing Ellenberg indicator values for nitrogen and light but increases with increasing soil moisture. Soil nitrogen concentrations and Ellenberg indicator values for nitrogen have significant positive (I. nolitangere) and negative (I. parviflora) effects on the number of seeds per capsule. Our results show that the native I. noli-tangere has efficient reproduction at its range edge while the invasive I. parviflora shows a marked decrease in seed size and seed number per capsule. These patterns are unrelated to the growth and obtained size of the plants: even low soil nitrogen availability in the north seemed not to limit plant growth and size. Our results suggest that the invasive I. parviflora tends to become more invasive at lower latitudes by producing heavier seeds and more seeds per capsule.
  •  
10.
  • De Frenne, Pieter, et al. (författare)
  • An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient
  • 2011
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 34:1, s. 132-140
  • Tidskriftsartikel (refereegranskat)abstract
    • We measured LHS traits in 41 Anemone nemorosa and 44 Milium effusum populations along a 1900-2300 km latitudinal gradient from N France to N Sweden. We then applied multilevel models to identify the effects of regional (temperature, latitude) and local (soil fertility and acidity, overstorey canopy cover) environmental factors on LHS traits. Both species displayed a significant 4% increase in plant height with every degree northward shift (almost a two-fold plant height difference between the southernmost and northernmost populations). Neither seed mass nor SLA showed a significant latitudinal cline. Temperature had a large effect on the three LHS traits of Anemone. Latitude, canopy cover and soil nutrients were related to the SLA and plant height of Milium. None of the investigated variables appeared to be related to the seed mass of Milium. The variation in LHS traits indicates that the ecological strategy determined by the position of each population in this three-factor triangle is not constant along the latitudinal gradient. The significant increase in plant height suggests greater competitive abilities for both species in the northernmost populations. We also found that the studied environmental factors affected the LHS traits of the two species on various scales: spring-flowering Anemone was affected more by temperature, whereas early-summer flowering Milium was affected more by local and other latitude-related factors. Finally, previously reported cross-species correlations between LHS traits and latitude were generally unsupported by our within-species approach.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy