SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chadt A) "

Sökning: WFRF:(Chadt A)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Lizunov, Vladimir A., et al. (författare)
  • Insulin stimulates fusion, but not tethering, of GLUT4 vesicles in skeletal muscle of HA-GLUT4-GFP transgenic mice
  • 2012
  • Ingår i: American Journal of Physiology: Endocrinology and Metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 302:8, s. 950-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin stimulates fusion, but not tethering, of GLUT4 vesicles in skeletal muscle of HA-GLUT4-GFP transgenic mice. Am J Physiol Endocrinol Metab 302: E950-E960, 2012. First published January 31, 2012; doi:10.1152/ajpendo.00466.2011.-Insulin regulates glucose uptake into fat and muscle by modulating the subcellular distribution of GLUT4 between the cell surface and intracellular compartments. However, quantification of these translocation processes in muscle by classical subcellular fractionation techniques is confounded by contaminating microfibrillar protein; dynamic studies at the molecular level are almost impossible. In this study, we introduce a muscle-specific transgenic mouse model in which HA-GLUT4-GFP is expressed under the control of the MCK promoter. HA-GLUT4-GFP was found to translocate to the plasma membrane and T-tubules after insulin stimulation, thus mimicking endogenous GLUT4. To investigate the dynamics of GLUT4 trafficking in skeletal muscle, we quantified vesicles containing HA-GLUT4-GFP near the sarcolemma and T-tubules and analyzed insulin-stimulated exocytosis at the single vesicle level by total internal reflection fluorescence and confocal microscopy. We found that only 10% of the intracellular GLUT4 pool comprised mobile vesicles, whereas most of the GLUT4 structures remained stationary or tethered at the sarcolemma or T-tubules. In fact, most of the insulin-stimulated exocytosis emanated from pretethered vesicles, whereas the small pool of mobile GLUT4 vesicles was not significantly affected by insulin. Our data strongly suggest that the mobile pool of GLUT4 vesicles is not a major site of insulin action but rather locally distributed. Most likely, pretethered GLUT4 structures are responsible for the initial phase of insulin-stimulated exocytosis.
  •  
4.
  • Szekeres, Ferenc, et al. (författare)
  • The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism
  • 2012
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 303:4, s. E524-E533
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL- Nob1.10 ( Nob1.10 SJL) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose and insulin tolerance tests were normal in TBC1D1-deficient Nob1.10 SJL mice, yet the 4-h-fasted insulin concentration was increased. Insulin-stimulated peripheral glucose utilization during a euglycemic hyperinsulinemic clamp was similar between genotypes, whereas the suppression of hepatic glucose production was increased in TBC1D1-deficient mice. In isolated extensor digitorum longus (EDL) but not soleus muscle, glucose transport in response to insulin, AICAR, or contraction was impaired by TBC1D1 deficiency. The reduction in glucose transport in EDL muscle from TBC1D1-deficient Nob1.10 SJL mice may be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice. In conclusion, TBC1D1 plays a role in regulation of glucose metabolism in skeletal muscle. Moreover, functional TBC1D1 is required for AICAR- or contraction-induced metabolic responses, implicating a role in energy-sensing signals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy