SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chadwick Oliver A.) "

Sökning: WFRF:(Chadwick Oliver A.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Roering, Joshua J., et al. (författare)
  • Quantifying erosion rates and weathering pathways that maximize soil organic carbon storage
  • 2023
  • Ingår i: Biogeochemistry. - : Springer Nature. - 0168-2563 .- 1573-515X. ; 164, s. 319-333
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary minerals that enter soils through bedrock weathering and atmospheric deposition can generate poorly crystalline minerals (PCM) that preferentially associate with soil organic carbon (SOC). These associations hinder microbial decomposition and the release of CO2 from soils to the atmosphere, making them a critical geochemical control on terrestrial carbon abundance and persistence. Studies that explore these relationships are typically derived from soil chronosequences that experience negligible erosion and thus do not readily translate to eroding landscapes. Here, we propose a theoretical framework to estimate steady-state PCM density and stocks for hilly and mountainous settings by coupling geochemical and geomorphic mass balance equations that account for soil production from bedrock and dust, soil erosion, PCM formation from weathering, and the transformation of PCMs into crystalline phases. We calculate an optimal erosion rate for maximum PCM abundance that arises because PCMs are limited by insufficient weathering at faster erosion rates and loss via “ripening” into more crystalline forms at slower erosion rates. The optimal erosion rate for modeled hilltop soil is modulated by reaction rate constants that govern the efficiency of primary mineral weathering and PCM ripening. By comparing our analysis with global compilations of erosion and soil production rates derived from cosmogenic nuclides, we show that landscapes with slow-to-moderate erosion rates may be optimal for harboring abundant PCM stocks that can facilitate SOC sequestration and limit turnover. Given the growing array of erosion-topography metrics and the widespread availability of high-resolution topographic data, our framework demonstrates how weathering and critical zone processes can be coupled to inform landscape prioritization for persistent SOC storage potential across a broad range of spatial and temporal scales.
  •  
3.
  •  
4.
  • Goodfellow, Bradley W., et al. (författare)
  • Depth and character of rock weathering across a basaltic-hosted climosequence on Hawai` i
  • 2014
  • Ingår i: Earth Surface Processes and Landforms. - : Wiley. - 0197-9337 .- 1096-9837. ; 39:3, s. 381-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Using field observations and geochemical and digital terrain analyses, we describe the structure and thickness of the regolith across a climosequence on the island of Hawaii to gain insight into the relative roles of precipitation and the near-surface hydrologic structure in determining weathering patterns. In the wet portion of the climosequence, where the long-term water balance is positive, the regolith thickness reaches an observed maximum of similar to 40m and appears limited by the geomorphic base-level of the landscape. However, even within this thick regolith, distinct units of varying weathering intensity occur; the vertical ordering of which largely reflects differences in the initial permeability structure of the basalt flows rather than a systematic decrease in weathering intensity downwards from the ground surface. In the dry portion of the climosequence, where the long-term water balance is negative, the regolith thickness is confined to similar to 1m, is highly dependent on the inferred permeability structure of the basalt flows, and is independent of geomorphic base-level. Weathering intensity also varies according to permeability structure and decreases in this thin regolith with distance beneath the ground surface. The abrupt change in regolith depth and character that coincides with the transition from net-positive to net-negative long-term water balance implies that small changes in precipitation rates around a neutral water balance result in large changes in the distribution and depth of weathering. Together our observations indicate that the distribution and depth of weathering in basalts (and probably other lithologies) might be best understood by considering how precipitation interacts with the complicated near-surface permeability structure over regolith-forming timescales to weather rock in the vadose zone.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy