SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chalangar Ebrahim PhD student 1984 ) "

Sökning: WFRF:(Chalangar Ebrahim PhD student 1984 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhatti, Muhammad Ali, et al. (författare)
  • Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange
  • 2019
  • Ingår i: Ceramics International. - Oxford : Elsevier. - 0272-8842 .- 1873-3956. ; 45:17, Part B, s. 23289-23297
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the doped ZnO nanorods with silver (Ag) as photosensitive material are prepared by the solvothermal method. The structural and optical characterization is carried out by the scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy and UV–visible spectroscopy. The use of Ag as dopant did not alter the morphology of ZnO except sample 4 which has flower like morphology. The Ag, Zn and O are the main constituent of doped materials. The XRD revealed a hexagonal phase for ZnO and cubic phase for silver and confirmed the successful doping of Ag. The photocatalytic activity of Ag doped ZnO nanorods was investigated for the photo degradation of methyl orange. The photocatalytic measurements show that 88% degradation of methyl orange by the sample 4 within the 2 h of UV light treatment (365 nm) is significant advancement in the photocatalyst and provide the inexpensive and promising materials for the photochemical applications. © 2019 Elsevier Ltd and Techna Group S.r.l.
  •  
2.
  • Chalangar, Ebrahim, PhD student, 1984- (författare)
  • Graphene-based nanocomposites for electronics and photocatalysis
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The development of future electronics depends on the availability of suitable functional materials. Printed electronics, for example, relies on access to highly conductive, inexpensive and printable materials, while strong light absorption and low carrier recombination rates are demanded in photocatalysis industry. Despite all efforts to develop new materials, it still remains a challenge to have all the desirable aspects in a single material. One possible route towards novel functional materials, with improved and unprecedented physical properties, is to form composites of different selected materials.In this work, we report on hydrothermal growth and characterization of graphene/zinc oxide (GR/ZnO) nanocomposites, suited for electronics and photocatalysis application. For conductive purposes, highly Al-doped ZnO nanorods grown on graphene nanoplates (GNPs) prevent the GNPs from agglomerating and promote conductive paths between the GNPs. The effect of the ZnO nanorod morphology and GR dispersity on the nanocomposite conductivity and GR/ZnO nanorod bonding strength were investigated by conductivity measurements and optical spectroscopy. The inspected samples show that growth in high pH solutions promotes a better graphene dispersity, higher doping and enhanced bonding between the GNPs and the ZnO nanorods. Growth in low pH solutions yield samples characterized by a higher conductivity and a reduced number of surface defects.In addition, different GR/ZnO nanocomposites, decorated with plasmonic silver iodide (AgI) nanoparticles, were synthesized and analyzed for solar-driven photocatalysis. The addition of Ag/AgI generates a strong surface plasmon resonance effect involving metallic Ag0, which redshifts the optical absorption maximum into the visible light region enhancing the photocatalytic performance under solar irradiation. A wide range of characterization techniques including, electron microscopy, photoelectron spectroscopy and x-ray diffraction confirm a successful formation of photocatalysts.Our findings show that the novel proposed GR-based nanocomposites can lead to further development of efficient photocatalyst materials with applications in removal of organic pollutants, or for fabrication of large volumes of inexpensive porous conjugated GR-semiconductor composites.
  •  
3.
  • Chalangar, Ebrahim, PhD student, 1984-, et al. (författare)
  • Nanopatterned rGO/ZnO : Al seed layer for vertical growth of single ZnO nanorods
  • 2023
  • Ingår i: Nanotechnology. - Bristol : Institute of Physics Publishing (IOPP). - 0957-4484 .- 1361-6528. ; 34:25, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we demonstrate a novel low-cost template-assisted route to synthesize vertical ZnO nanorod arrays on Si (100). The nanorods were grown on a patterned double seed layer comprised of reduced graphene oxide (rGO) and Al-doped ZnO nanoparticles. The seed layer was fabricated by spray-coating the substrate with graphene and then dip-coating it into a Al-doped ZnO sol-gel solution. The growth template was fabricated from a double-layer resist, spin-coated on top of the rGO/ZnO:Al seed layer, and patterned by colloidal lithography. The results show a successful chemical bath deposition of vertically aligned ZnO nanorods with controllable diameter and density in the nanoholes in the patterned resist mask. Our novel method can presumably be used to fabricate electronic devices on virtually any smooth substrate with a thermal budget of 1 min at 300 °C with the seed layer acting as a conductive strain-relieving back contact. The top contact can simply be made by depositing a suitable transparent conductive oxide or metal, depending on the specific application. © 2023 The Author(s). Published by IOP Publishing Ltd.
  •  
4.
  • Chalangar, Ebrahim, PhD student, 1984-, et al. (författare)
  • Synthesis of Vertically Aligned ZnO Nanorods Using Sol-gel Seeding and Colloidal Lithography Patterning
  • 2021
  • Ingår i: Nanoscale Research Letters. - Heidelberg : Springer Science and Business Media LLC. - 1931-7573 .- 1556-276X. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Different ZnO nanostructures can be grown using low-cost chemical bath deposition. Although this technique is cost-efficient and flexible, the final structures are usually randomly oriented and hardly controllable in terms of homogeneity and surface density. In this work, we use colloidal lithography to pattern (100) silicon substrates to fully control the nanorods' morphology and density. Moreover, a sol-gel prepared ZnO seed layer was employed to compensate for the lattice mismatch between the silicon substrate and ZnO nanorods. The results show a successful growth of vertically aligned ZnO nanorods with controllable diameter and density in the designated openings in the patterned resist mask deposited on the seed layer. Our method can be used to fabricate optimized devices where vertically ordered ZnO nanorods of high crystalline quality are crucial for the device performance.
  •  
5.
  • Shah, Aqeel Ahmed, et al. (författare)
  • Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange
  • 2020
  • Ingår i: Ceramics International. - Oxford : Elsevier. - 0272-8842 .- 1873-3956. ; 46:8, part A, s. 9997-10005
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, zinc oxide (ZnO) nanorods are doped with copper by low temperature aqueous chemical growth method using different concentrations of copper 5 mg, 10 mg, 15 mg and 20 mg and labeled as sample 1, 2, 3 and 4 respectively. The morphology and phase purity of nanostructures was investigated by scanning electron microscopy, and powder X-ray diffraction techniques. The optical characterization was carried out through UV–Vis spectrophotometer. The band gap of coper doped ZnO has brought reduction at 250–600 nm and it indicates the fewer time for the recombination of electron and hole pairs, thus enhanced photo degradation efficiency is found. ZnO exhibits nanorods like shape even after the doping of copper. The photo degradation efficiency for the two chronic dyes such as methyl orange MO and methylene blue MB was found to be 57.5% and 60% respectively for a time of 180 mints. This study suggests that the copper impurity in ZnO can tailor its photocatalytic activity at considerable rate. The proposed photo catalysts are promising and can be used for the waste water treatment and other environmental applications. © 2019 Elsevier Ltd and Techna Group S.r.l.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy