SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chaldebas Matthieu) "

Sökning: WFRF:(Chaldebas Matthieu)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chan, Yi-Hao, et al. (författare)
  • Human TMEFF1 is a restriction factor for herpes simplex virus in the brain
  • 2024
  • Ingår i: NATURE. - 0028-0836 .- 1476-4687. ; 632, s. 390-400
  • Tidskriftsartikel (refereegranskat)abstract
    • Most cases of herpes simplex virus 1 (HSV-1) encephalitis (HSE) remain unexplained1,2. Here, we report on two unrelated people who had HSE as children and are homozygous for rare deleterious variants of TMEFF1, which encodes a cell membrane protein that is preferentially expressed by brain cortical neurons. TMEFF1 interacts with the cell-surface HSV-1 receptor NECTIN-1, impairing HSV-1 glycoprotein D- and NECTIN-1-mediated fusion of the virus and the cell membrane, blocking viral entry. Genetic TMEFF1 deficiency allows HSV-1 to rapidly enter cortical neurons that are either patient specific or derived from CRISPR-Cas9-engineered human pluripotent stem cells, thereby enhancing HSV-1 translocation to the nucleus and subsequent replication. This cellular phenotype can be rescued by pretreatment with type I interferon (IFN) or the expression of exogenous wild-type TMEFF1. Moreover, ectopic expression of full-length TMEFF1 or its amino-terminal extracellular domain, but not its carboxy-terminal intracellular domain, impairs HSV-1 entry into NECTIN-1-expressing cells other than neurons, increasing their resistance to HSV-1 infection. Human TMEFF1 is therefore a host restriction factor for HSV-1 entry into cortical neurons. Its constitutively high abundance in cortical neurons protects these cells from HSV-1 infection, whereas inherited TMEFF1 deficiency renders them susceptible to this virus and can therefore underlie HSE. A study of two childhood cases of herpes simplex encephalitis shows that TMEFF1 interacts with the HSV-1 cell-surface receptor NECTIN-1, preventing HSV-1 from fusing with the cell membrane and entering cortical neurons.
  •  
2.
  • Chan, Yi-Hao, et al. (författare)
  • SARS-CoV-2 brainstem encephalitis in human inherited DBR1 deficiency.
  • 2024
  • Ingår i: The Journal of experimental medicine. - 1540-9538. ; 221:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherited deficiency of the RNA lariat-debranching enzyme 1 (DBR1) is a rare etiology of brainstem viral encephalitis. The cellular basis of disease and the range of viral predisposition are unclear. We report inherited DBR1 deficiency in a 14-year-old boy who suffered from isolated SARS-CoV-2 brainstem encephalitis. The patient is homozygous for a previously reported hypomorphic and pathogenic DBR1 variant (I120T). Consistently, DBR1 I120T/I120T fibroblasts from affected individuals from this and another unrelated kindred have similarly low levels of DBR1 protein and high levels of RNA lariats. DBR1 I120T/I120T human pluripotent stem cell (hPSC)-derived hindbrain neurons are highly susceptible to SARS-CoV-2 infection. Exogenous WT DBR1 expression in DBR1 I120T/I120T fibroblasts and hindbrain neurons rescued the RNA lariat accumulation phenotype. Moreover, expression of exogenous RNA lariats, mimicking DBR1 deficiency, increased the susceptibility of WT hindbrain neurons to SARS-CoV-2 infection. Inborn errors of DBR1 impair hindbrain neuron-intrinsic antiviral immunity, predisposing to viral infections of the brainstem, including that by SARS-CoV-2.
  •  
3.
  • Matuozzo, Daniela, et al. (författare)
  • Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19.
  • 2023
  • Ingår i: Genome medicine. - 1756-994X. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in~80% of cases.We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1×10-4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1×10-4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4×10-3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7×10-8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68×10-5).Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60years old.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy