SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chaloupka Milani) "

Sökning: WFRF:(Chaloupka Milani)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chaloupka, Milani, et al. (författare)
  • Encouraging outlook for recovery of a once severely exploited marine megaherbivore
  • 2008
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-8238 .- 1466-822X. ; 17:2, s. 297-304
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim To critically review the status of the green sea turtle (Chelonia mydas) using the best available scientific studies as there is a prevailing view that this species is globally endangered and its marine ecosystem functions compromised. Location Ogasawara (Japan), Hawaii (USA), Great Barrier Reef (Australia), Florida (USA), Tortuguero (Costa Rica). Methods We compiled seasonal nesting activity data from all reliable continuous long-term studies (> 25 years), which comprised data series for six of the world's major green turtle rookeries. We estimated the underlying time-specific trend in these six rookery-specific nester or nest abundance series using a generalized smoothing spline regression approach. Results Estimated rates of nesting population increase ranged from c. 4-14% per annum over the past two to three decades. These rates varied considerably among the rookeries, reflecting the level of historical exploitation. Similar increases in nesting population were also evident for many other green turtle stocks that have been monitored for shorter durations than the long-term studies presented here. Main conclusions We show that six of the major green turtle nesting populations in the world have been increasing over the past two to three decades following protection from human hazards such as exploitation of eggs and turtles. This population recovery or rebound capacity is encouraging and suggests that the green turtle is not on the brink of global extinction even though some stocks have been seriously depleted and are still below historical abundance levels. This demonstrates that relatively simple conservation strategies can have a profound effect on the recovery of once-depleted green turtle stocks and presumably the restoration of their ecological function as major marine consumers.
  •  
2.
  • Troëng, Sebastian, et al. (författare)
  • Variation in adult annual survival probability and remigration intervals of sea turtles
  • 2007
  • Ingår i: Marine Biology. - : Springer Science and Business Media LLC. - 0025-3162 .- 1432-1793. ; 151:5, s. 1721-1730
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed a large dataset to quantify adult annual survival probability and remigration intervals for the Tortuguero, Costa Rica green turtle population. Annual survival probability was estimated at 0.85 (95% CI 0.75-0.92) using a recovery model and at 0.85 (95% CI 0.83-0.87) using an open robust design model. The two most common modes of remigration are 2 and 3 years. Annual survival probability is lower and remigration intervals are shorter than for other green turtle populations. Explanations for short remigration intervals include reproductive compensation due to historic population declines, availability of better quality food items, favorable environmental conditions, and short distance to the main foraging grounds. Variation in survival and remigration intervals have profound consequences for management and life history evolution. The short remigration intervals of Tortuguero green turtles partly offset mortality caused by turtle fishing in Nicaragua and mean that low juvenile survival represents a more urgent threat to the population than low adult survival. Low adult survival probability could result in selective pressure for earlier age at maturity.
  •  
3.
  • Wallace, Bryan P., et al. (författare)
  • Global Conservation Priorities for Marine Turtles
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a "conservation priorities portfolio" system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa.
  •  
4.
  • Wallace, Bryan P., et al. (författare)
  • Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales
  • 2010
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques - including site-based monitoring, genetic analyses, mark-recapture studies and telemetry - can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings: To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine-to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance: The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework - including maps and supporting metadata - will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy