SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chalov S.) "

Sökning: WFRF:(Chalov S.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lappalainen, H. K., et al. (författare)
  • Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China - a Pan-Eurasian Experiment (PEEX) programme perspective
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:7, s. 4413-4469
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pan-Eurasian Experiment (PEEX) Science Plan, released in 2015, addressed a need for a holistic system understanding and outlined the most urgent research needs for the rapidly changing Arctic-boreal region. Air quality in China, together with the long-range transport of atmospheric pollutants, was also indicated as one of the most crucial topics of the research agenda. These two geographical regions, the northern Eurasian Arctic-boreal region and China, especially the megacities in China, were identified as a "PEEX region". It is also important to recognize that the PEEX geographical region is an area where science-based policy actions would have significant impacts on the global climate. This paper summarizes results obtained during the last 5 years in the northern Eurasian region, together with recent observations of the air quality in the urban environments in China, in the context of the PEEX programme. The main regions of interest are the Russian Arctic, northern Eurasian boreal forests (Siberia) and peatlands, and the megacities in China. We frame our analysis against research themes introduced in the PEEX Science Plan in 2015. We summarize recent progress towards an enhanced holistic understanding of the land-atmosphere-ocean systems feedbacks. We conclude that although the scientific knowledge in these regions has increased, the new results are in many cases insufficient, and there are still gaps in our understanding of large-scale climate-Earth surface interactions and feedbacks. This arises from limitations in research infrastructures, especially the lack of coordinated, continuous and comprehensive in situ observations of the study region as well as integrative data analyses, hindering a comprehensive system analysis. The fast-changing environment and ecosystem changes driven by climate change, socio-economic activities like the China Silk Road Initiative, and the global trends like urbanization further complicate such analyses. We recognize new topics with an increasing importance in the near future, especially "the enhancing biological sequestration capacity of greenhouse gases into forests and soils to mitigate climate change" and the "socio-economic development to tackle air quality issues".
  •  
2.
  •  
3.
  • Chalov, Sergey R., et al. (författare)
  • Sediment transport in headwaters of a volcanic catchment-Kamchatka Peninsula case study
  • 2017
  • Ingår i: Frontiers of Earth Science. - : Springer Science and Business Media LLC. - 2095-0195 .- 2095-0209. ; 11:3, s. 565-578
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to specific environmental conditions, headwater catchments located on volcanic slopes and valleys are characterized by distinctive hydrology and sediment transport patterns. However, lack of sufficient monitoring causes that the governing processes and patterns in these areas are rarely well understood. In this study, spatiotemporal water discharge and sediment transport from upstream sources was investigated in one of the numerous headwater catchments located in the lahar valleys of the Kamchatka Peninsula Sukhaya Elizovskaya River near Avachinskii and Koryakskii volcanoes. Three different subcatchments and corresponding channel types (wandering rivers within lahar valleys, mountain rivers within volcanic slopes and rivers within submountain terrains) were identified in the studied area. Our measurements from different periods of observations between years 2012-2014 showed that the studied catchment was characterized by extreme diurnal fluctuation of water discharges and sediment loads that were influenced by snowmelt patterns and high infiltration rates of the easily erodible lahar deposits. The highest recorded sediment loads were up to 9.10(4) mg/L which was related to an increase of two orders of magnitude within a one day of observations. Additionally, to get a quantitative estimate of the spatial distribution of the eroded material in the volcanic substrates we applied an empirical soil erosion and sediment yield model-modified universal soil loss equation (MUSLE). The modeling results showed that even if the applications of the universal erosion model to different non-agricultural areas (e.g., volcanic catchments) can lead to irrelevant results, the MUSLE model delivered might be acceptable for non-lahar areas of the studied volcanic catchment. Overall the results of our study increase our understanding of the hydrology and associated sediment transport for prediction of risk management within headwater volcanic catchments.
  •  
4.
  • Lappalainen, Hanna K., et al. (författare)
  • Pan-Eurasian Experiment (PEEX) : towards a holistic understanding of the feedbacks and interactions in the land-atmosphere-ocean-society continuum in the northern Eurasian region
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:22, s. 14421-14461
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern Eurasian regions and Arctic Ocean will very likely undergo substantial changes during the next decades. The Arctic-boreal natural environments play a crucial role in the global climate via albedo change, carbon sources and sinks as well as atmospheric aerosol production from biogenic volatile organic compounds. Furthermore, it is expected that global trade activities, demographic movement, and use of natural resources will be increasing in the Arctic regions. There is a need for a novel research approach, which not only identifies and tackles the relevant multi-disciplinary research questions, but also is able to make a holistic system analysis of the expected feedbacks. In this paper, we introduce the research agenda of the Pan-Eurasian Experiment (PEEX), a multi-scale, multi-disciplinary and international program started in 2012 (https://www.atm.helsinki.fi/peex/). PEEX sets a research approach by which large-scale research topics are investigated from a system perspective and which aims to fill the key gaps in our understanding of the feedbacks and interactions between the land-atmosphereaquatic-society continuum in the northern Eurasian region. We introduce here the state of the art for the key topics in the PEEX research agenda and present the future prospects of the research, which we see relevant in this context.
  •  
5.
  • Åhlen, Imenne, et al. (författare)
  • Hydro-climatic changes of wetlandscapes across the world
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976–2015 in 25 wetlandscapes distributed across the world’s tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world’s land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes.
  •  
6.
  • Chalov, Sergey R., et al. (författare)
  • Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia
  • 2015
  • Ingår i: Environmental Earth Sciences. - : Springer Science and Business Media LLC. - 1866-6280 .- 1866-6299. ; 73:2, s. 663-680
  • Tidskriftsartikel (refereegranskat)abstract
    • Many Asian rivers have been intensively used to boost economic growth, resulting in sudden and drastic changes in sediment transport patterns. However, a few rivers are still undisturbed. The present paper considers the unregulated Selenga River and its basin, located in Russia and Mongolia. The river contributes to 50 % of the total inflow to Lake Baikal. Pending scientific challenges include the quantification of sediment loads and erosion-deposition patterns along the Selenga River system, the understanding of suspended particulate matter composition and the importance of peak flow events for total sediment discharge and heavy metal transport. Field data and hydraulic modeling converge on showing that peak flow events during spring and summer contribute to the main part (70-80 %) of the annual sediment and pollution loads in upstream parts of the basin. The Selenga River carries mostly silt and sand. The average particle size differs by a factor of four between summer floods and base flow periods. The low amount of particulate organic matter (ranging between 1 and 16 % in the studied rivers) is consistent with the significant role of sediments originating from mining areas and in-channel sources. The bed load transport in the downstream part of the river basin is high (up to 50 % of the total transport), and channel storage plays an important role in the total sediment transport to Lake Baikal. Reported statistically significant multi-decadal declines in sediment fluxes in the downstream Selenga River can be attributed to the abandonment of cultivated lands and (most likely) to changing hydroclimatic factors.
  •  
7.
  • Lychagin, M., et al. (författare)
  • Surface water pathways and fluxes of metals under changing environmental conditions and human interventions in the Selenga River system
  • 2017
  • Ingår i: Environmental Earth Sciences. - : Springer Science and Business Media LLC. - 1866-6280 .- 1866-6299. ; 76:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the results of novel field campaigns in the extensive (447,000 km(2)) Selenga River basin, through which 304 samples of river water and 308 samples of suspended matter were collected during high and low water periods between 2011 and 2013. The Selenga River is the largest tributary (more than 50% of the inflow) to the Lake Baikal. Due to ongoing hydroclimatic change and human pressures under conditions of economic growth, the rivers of the area experience significant change in water quality. A key issue for improved understanding of regional impacts of the environmental change is to disentangle the influence of climate change from that of other pressures within the catchment. Our research aims to evaluate the pathways and mass flows of heavy metals and metalloids both in dissolved and suspended forms, taking a basin- scale perspective that previously has not been fully pursued in the Lake Baikal region. Results showed quality deterioration over short distances due to strong impact of hot spots from urban and industrial activities, including mining. The determined enrichment of dissolved metals in waters of Selenga River as well as the spatial and temporal variability of water and suspended sediment composition is further analyzed in the context of climatic, hydrological and land use drivers.
  •  
8.
  • Pietroń, Jan, et al. (författare)
  • Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin
  • 2017
  • Ingår i: Catena (Cremlingen. Print). - : Elsevier BV. - 0341-8162 .- 1872-6887. ; 152, s. 82-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface mining can contribute to increasing riverine loads of potentially metal-enriched sediments. However, the related human disturbances and natural processes reflect a great complexity, which hinders quantitative Understanding. We here consider the Zaamar Goldfield in Mongolia, one of the world's largest placer mining sites, located in the Tuul River basin (upper Lake Baikal basin). A main study aim is to investigate relations between patterns of increased sediment loads along the Tuul River and the (spatially variable) area coverage of active or recently abandoned placer mines in the river vicinity. Specifically, we compare observed loads derived from nested catchment areas with the output from spatially distributed soil erosion modelling. Results showed that riverine sediment loads in mining areas reflect soil losses both from soil erosion and direct human impacts (e.g. waste water discharge), which are two to three orders of magnitude higher than the input from natural areas dominated by soil erosion alone. Notably, the sediment load contributions from the mining areas were insensitive to changes in hydrometeorological conditions, whereas contributions from natural areas were much lower during drier periods (as expected when governed by soil erosion by water). Accordingly, the relative contribution to the total sediment load (TSL) of metal-enriched soil from mining areas is likely to be particularly pronounced (with estimated values of about 80% of TSL) under drier hydrometeorological conditions. This is consistent with observations of considerably elevated metal concentrations under low flow conditions and implies that if annual average discharge continues to decrease in the Tuul River as well as the entire Selenga River system, increased metal concentrations may be one of the consequences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy