SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chalov Sergey R.) "

Sökning: WFRF:(Chalov Sergey R.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lappalainen, Hanna K., et al. (författare)
  • Pan-Eurasian Experiment (PEEX) : towards a holistic understanding of the feedbacks and interactions in the land-atmosphere-ocean-society continuum in the northern Eurasian region
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:22, s. 14421-14461
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern Eurasian regions and Arctic Ocean will very likely undergo substantial changes during the next decades. The Arctic-boreal natural environments play a crucial role in the global climate via albedo change, carbon sources and sinks as well as atmospheric aerosol production from biogenic volatile organic compounds. Furthermore, it is expected that global trade activities, demographic movement, and use of natural resources will be increasing in the Arctic regions. There is a need for a novel research approach, which not only identifies and tackles the relevant multi-disciplinary research questions, but also is able to make a holistic system analysis of the expected feedbacks. In this paper, we introduce the research agenda of the Pan-Eurasian Experiment (PEEX), a multi-scale, multi-disciplinary and international program started in 2012 (https://www.atm.helsinki.fi/peex/). PEEX sets a research approach by which large-scale research topics are investigated from a system perspective and which aims to fill the key gaps in our understanding of the feedbacks and interactions between the land-atmosphereaquatic-society continuum in the northern Eurasian region. We introduce here the state of the art for the key topics in the PEEX research agenda and present the future prospects of the research, which we see relevant in this context.
  •  
2.
  • Aminjafari, Saeid, et al. (författare)
  • Drivers and extent of surface water occurrence in the Selenga River Delta, Russia
  • 2021
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 2214-5818. ; 38
  • Tidskriftsartikel (refereegranskat)abstract
    • Study region: Selenga River Delta (SRD), Russia.Study focus: How is water occurrence changing in the SRD, and what are the hydroclimatic drivers behind these changes? The presence of water on the surface in river deltas is governed by land use, geomorphology, and the flux of water to and from the Delta. We trained an accurate image classification of the Landsat satellite imagery during the last 33 years to quantify surface water occurrence and its changes in the SRD. After comparing our estimations with global-scale data sets, we determined the hydrological drivers of these changes.New hydrological insights for the region: We find mild decreases in water occurrence in 51% of the SRD's surface area from 1987-2002 to 2003-2020. Water occurrence in the most affected areas decreased by 20% and in the most water-gaining areas increased by 10%. We find a significant relationship between water occurrence and runoff (R-2 = 0.56) that does not exist between water occurrence and suspended sediment concentration (SSC), Lake Baikal's water level, and potential evapotranspiration. The time series of water occurrence follows the peaks in the runoff but not its long-term trend. However, the extremes in SSC do not influence surface water occurrence (R-2 < 0.1), although their long-term trends are similar. Contrary to expected, we find that the Delta has a relatively stable long-term water availability for the time being.
  •  
3.
  • Chalov, Sergey R., et al. (författare)
  • Sediment transport in headwaters of a volcanic catchment-Kamchatka Peninsula case study
  • 2017
  • Ingår i: Frontiers of Earth Science. - : Springer Science and Business Media LLC. - 2095-0195 .- 2095-0209. ; 11:3, s. 565-578
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to specific environmental conditions, headwater catchments located on volcanic slopes and valleys are characterized by distinctive hydrology and sediment transport patterns. However, lack of sufficient monitoring causes that the governing processes and patterns in these areas are rarely well understood. In this study, spatiotemporal water discharge and sediment transport from upstream sources was investigated in one of the numerous headwater catchments located in the lahar valleys of the Kamchatka Peninsula Sukhaya Elizovskaya River near Avachinskii and Koryakskii volcanoes. Three different subcatchments and corresponding channel types (wandering rivers within lahar valleys, mountain rivers within volcanic slopes and rivers within submountain terrains) were identified in the studied area. Our measurements from different periods of observations between years 2012-2014 showed that the studied catchment was characterized by extreme diurnal fluctuation of water discharges and sediment loads that were influenced by snowmelt patterns and high infiltration rates of the easily erodible lahar deposits. The highest recorded sediment loads were up to 9.10(4) mg/L which was related to an increase of two orders of magnitude within a one day of observations. Additionally, to get a quantitative estimate of the spatial distribution of the eroded material in the volcanic substrates we applied an empirical soil erosion and sediment yield model-modified universal soil loss equation (MUSLE). The modeling results showed that even if the applications of the universal erosion model to different non-agricultural areas (e.g., volcanic catchments) can lead to irrelevant results, the MUSLE model delivered might be acceptable for non-lahar areas of the studied volcanic catchment. Overall the results of our study increase our understanding of the hydrology and associated sediment transport for prediction of risk management within headwater volcanic catchments.
  •  
4.
  • Chalov, Sergey R., et al. (författare)
  • Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia
  • 2015
  • Ingår i: Environmental Earth Sciences. - : Springer Science and Business Media LLC. - 1866-6280 .- 1866-6299. ; 73:2, s. 663-680
  • Tidskriftsartikel (refereegranskat)abstract
    • Many Asian rivers have been intensively used to boost economic growth, resulting in sudden and drastic changes in sediment transport patterns. However, a few rivers are still undisturbed. The present paper considers the unregulated Selenga River and its basin, located in Russia and Mongolia. The river contributes to 50 % of the total inflow to Lake Baikal. Pending scientific challenges include the quantification of sediment loads and erosion-deposition patterns along the Selenga River system, the understanding of suspended particulate matter composition and the importance of peak flow events for total sediment discharge and heavy metal transport. Field data and hydraulic modeling converge on showing that peak flow events during spring and summer contribute to the main part (70-80 %) of the annual sediment and pollution loads in upstream parts of the basin. The Selenga River carries mostly silt and sand. The average particle size differs by a factor of four between summer floods and base flow periods. The low amount of particulate organic matter (ranging between 1 and 16 % in the studied rivers) is consistent with the significant role of sediments originating from mining areas and in-channel sources. The bed load transport in the downstream part of the river basin is high (up to 50 % of the total transport), and channel storage plays an important role in the total sediment transport to Lake Baikal. Reported statistically significant multi-decadal declines in sediment fluxes in the downstream Selenga River can be attributed to the abandonment of cultivated lands and (most likely) to changing hydroclimatic factors.
  •  
5.
  • Fischer, Sandra, et al. (författare)
  • Disproportionate Water Quality Impacts from the Century-Old Nautanen Copper Mines, Northern Sweden
  • 2020
  • Ingår i: Sustainability. - : MDPI AG. - 2071-1050. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollution from small historical mining sites is usually overlooked, in contrast to larger ones. Especially in the Arctic, knowledge gaps remain regarding the long-term mine waste impacts, such as metal leakage, on water quality. We study the small copper (Cu) mines of Nautanen, northern Sweden, which had been in operation for only six years when abandoned approximately 110 years ago in 1908. Measurements from field campaigns in 2017 are compared to synthesized historical measurement data from 1993 to 2014, and our results show that concentrations of Cu, Zn, and Cd on-site as well as downstream from the mining site are order(s) of magnitude higher than the local background values. This is despite the small scale of the Nautanen mining site, the short duration of operation, and the long time since closure. Considering the small amount of waste produced at Nautanen, the metal loads from Nautanen are still surprisingly high compared to the metal loads from larger mines. We argue that disproportionately large amounts of metals may be added to surface water systems from the numerous small abandoned mining sites. Such pollution loads need to be accounted for in sustainable assessments of total pollutant pressures in the relatively vulnerable Arctic environment.
  •  
6.
  • Fischer, Sandra, et al. (författare)
  • Microbial Sulfate Reduction (MSR) as a Nature-Based Solution (NBS) to Mine Drainage : Contrasting Spatiotemporal Conditions in Northern Europe
  • 2022
  • Ingår i: Water resources research. - 0043-1397 .- 1944-7973. ; 58:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An emerging solution in mine waste remediation is the use of biological processes, such as microbial sulfate reduction (MSR), to immobilize metals, reducing their bioavailability and buffering the pH of acid mine drainage. Apart from laboratory tests and local observations of natural MSR in, for example, single wetlands, little is known about spatiotemporal characteristics of freshwater MSR from multiple locations within entire hydrological catchments. We here applied an isotopic fractionation (δ34S values in SO42−) and a Monte Carlo-based mixing analysis scheme to detect MSR and its variation across two major mining regions (Imetjoki, Sweden and Khibiny, Russia) in the Arctic part of Europe under different seasonal conditions. Results indicate a range of catchment-scale MSR values in the Arctic of ∼5%–20% where the low end of the range was associated with the non-vegetated, mountainous terrain of the Khibiny catchment, having low levels of dissolved organic carbon (DOC). The high end of the range was related to vegetated conditions provided by the Imetjoki catchment that also contains wetlands, lakes, and local aquifers. These prolong hydrological residence times and support MSR hot spots reaching values of ∼40%. The present results additionally show evidence of MSR persistence over different seasons, indicating large potential, even under relatively cold conditions, of using MSR as part of nature-based solutions to mitigate adverse impacts of (acid) mine drainage. The results call for more detailed investigations regarding potential field-scale correlations between MSR and individual landscape and hydroclimatic characteristics, which, for example, can be supported by the isotopic fractionation and mixing scheme utilized here.
  •  
7.
  • Jarsjö, Jerker, et al. (författare)
  • Patterns of soil contamination, erosion and river loading of metals in a gold mining region of northern Mongolia
  • 2017
  • Ingår i: Regional Environmental Change. - : Springer Science and Business Media LLC. - 1436-3798 .- 1436-378X. ; 17:7, s. 1991-2005
  • Tidskriftsartikel (refereegranskat)abstract
    • Mining has become one of the main causes of increased heavy metal loading of river systems throughout the world. There is however an evident gap between assessments of soil contamination and metal release at the mined sites and estimates of river pollution. The present work focuses on Zaamar Goldfield, which is one of the largest placer gold mines in the world, located along the Tuul River, Mongolia, which ultimately drains into Lake Baikal, Russia. It combines field observations in the river basin with soil erosion modelling and aims at quantifying the contribution from natural erosion of metal-rich soil to observed increases in mass flows of metals along the Tuul River. Results show that the sediment delivery from the mining area to the Tuul River is considerably higher than the possible contribution from natural soil erosion. This is primarily due to excessive mining-related water use creating turbid wastewaters, disturbed filtering functions of deposition areas (natural sediment traps) close to the river and disturbances from infrastructures such as roads. Furthermore, relative to background levels, soils within Zaamar Goldfield contained elevated concentrations of As, Sr, Mn, V, Ni, Cu and Cr. The enhanced soil loss caused by mining-related activities can also explain observed, considerable increases in mass flows of metals in the Tuul River. The present example from Tuul River may provide useful new insights regarding the erosion and geomorphic evolution of mined areas, as well as the associated delivery of metals into stream networks.
  •  
8.
  • Pietroń, Jan, et al. (författare)
  • Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin
  • 2017
  • Ingår i: Catena (Cremlingen. Print). - : Elsevier BV. - 0341-8162 .- 1872-6887. ; 152, s. 82-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface mining can contribute to increasing riverine loads of potentially metal-enriched sediments. However, the related human disturbances and natural processes reflect a great complexity, which hinders quantitative Understanding. We here consider the Zaamar Goldfield in Mongolia, one of the world's largest placer mining sites, located in the Tuul River basin (upper Lake Baikal basin). A main study aim is to investigate relations between patterns of increased sediment loads along the Tuul River and the (spatially variable) area coverage of active or recently abandoned placer mines in the river vicinity. Specifically, we compare observed loads derived from nested catchment areas with the output from spatially distributed soil erosion modelling. Results showed that riverine sediment loads in mining areas reflect soil losses both from soil erosion and direct human impacts (e.g. waste water discharge), which are two to three orders of magnitude higher than the input from natural areas dominated by soil erosion alone. Notably, the sediment load contributions from the mining areas were insensitive to changes in hydrometeorological conditions, whereas contributions from natural areas were much lower during drier periods (as expected when governed by soil erosion by water). Accordingly, the relative contribution to the total sediment load (TSL) of metal-enriched soil from mining areas is likely to be particularly pronounced (with estimated values of about 80% of TSL) under drier hydrometeorological conditions. This is consistent with observations of considerably elevated metal concentrations under low flow conditions and implies that if annual average discharge continues to decrease in the Tuul River as well as the entire Selenga River system, increased metal concentrations may be one of the consequences.
  •  
9.
  • Pietroń, Jan, et al. (författare)
  • Model analyses of the contribution of in-channel processes to sediment concentration hysteresis loops
  • 2015
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 527, s. 576-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Sediment concentration (SC)-water discharge (Q) relations in rivers are typically governed by multiple and relatively complex processes. Due to hysteresis effects, sediment discharges can differ for similar or equivalent water discharges, which causes scatter in empirical datasets and may decrease the predictive power of SC rating curves. Such hysteresis effects must therefore be understood and accounted for to make dependable predictions for river system management. The overall objectives of this study are to develop modelling approaches suitable for reproducing and predicting hysteresis effects at larger scales and to investigate the possible contribution of in-channel processes (erosion and deposition) to sediment concentration hysteresis loops. To investigate relevant field-scale conditions, we develop a one-dimensional dynamic sediment transport model of the downstream Tuul River (northern Mongolia), investigating in-channel processes along a 141 km stretch during a hydrological year. The results show that the present modelling approach can reproduce both anti-clockwise and clockwise hysteresis effects. Importantly, in-channel processes alone can cause considerable anti-clockwise hysteresis effects without being reinforced by catchment processes such as hillslope erosion. Such specific contributions from in-channel processes introduced data scatter into the sediment rating curves, decreasing their R-2-values from unity to approximately 0.5 to 0.6. More generally, possible changes in the number or magnitude of high-flow events, caused by climatic or other anthropogenic factors, could influence total sediment deposition, which was primarily found to occur during relatively short high-flow events. Such potential changes also have important implications for the possible spreading of polluted sediments.
  •  
10.
  • Pietroń, Jan, et al. (författare)
  • Sedimentation patterns in the Selenga River delta under changing hydroclimatic conditions
  • 2018
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 32:2, s. 278-292
  • Tidskriftsartikel (refereegranskat)abstract
    • The Selenga River delta (Russia) is a large (>600km(2)) fluvially dominated fresh water system that transfers water and sediment from an undammed drainage basin into Lake Baikal, a United Nations Educational, Scientific, and Cultural Organization World Heritage Site. Through sedimentation processes, the delta and its wetlands provide important environmental services, such as storage of sediment-bound pollutants (e.g., metals), thereby reducing their input to Lake Baikal. However, in the Selenga River delta and many other deltas of the world, there is a lack of knowledge regarding impacts of potential shifts in the flow regime (e.g., due to climate change and other anthropogenic impacts) on sedimentation processes, including sediment exchanges between deltaic channels and adjacent wetlands. This study uses field measurements of water velocities and sediment characteristics in the Selenga River delta, investigating conditions of moderate discharge, which have become more frequent over the past decades (at the expense of peak flows, Q>1,350m(3)s(-1)). The aims are to determine if the river system under moderate flow conditions is capable of supporting sediment export from the main distributary channels of the delta to the adjacent wetlands. The results show that most of the deposited sediment outside of the deltaic channels is characterized by a large proportion of silt and clay material (i.e., <63m). For example, floodplain lakes function as sinks of very fine sediment (e.g., 97% of sediment by weight<63m). Additionally, bed material sediment is found to be transported outside of the channel margins during conditions of moderate and high water discharge conditions (Q1,000m(3)s(-1)). Submerged banks and marshlands located in the backwater zone of the delta accumulate sediment during such discharges, supporting wetland development. Thus, these regions likely sequester various metals bound to Selenga River sediment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy