SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chamley L) "

Search: WFRF:(Chamley L)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Tong, Mancy, et al. (author)
  • Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication
  • 2016
  • In: Human Reproduction. - : Oxford University Press. - 0268-1161 .- 1460-2350. ; 31:4, s. 687-699
  • Journal article (peer-reviewed)abstract
    • STUDY QUESTION: What proteins are carried by extracellular vesicles (EVs) released from normal first trimester placentae? SUMMARY ANSWER: One thousand five hundred and eighty-five, 1656 and 1476 proteins were characterized in macro-, micro-and nano-vesicles, respectively, from first trimester placentae, with all EV fractions being enriched for proteins involved in vesicle transport and inflammation. WHAT IS KNOWN ALREADY: Placental EVs are being increasingly recognized as important mediators of both healthy and pathological pregnancies. However, current research has focused on detecting changes in specific proteins in particular fractions of vesicles during disease. This is the first study to investigate the full proteome of different-sized fractions of EVs from the same first trimester placenta and highlights the differences/similarities between the vesicle fractions. STUDY DESIGN, SIZE, DURATION: A well-established ex vivo placental explant culture model was used to generate macro-, micro-and nano-vesicles from 56 first trimester placentae. Vesicle fractions were collected by differential ultracentrifugation, quantified and characterized. PARTICIPANTS/MATERIALS, SETTING, METHODS: Placental macro-, micro-and nano-vesicles were characterized by microscopy, dynamic light scattering and nanoparticle tracking analysis. The proteome of each EV fraction was interrogated using liquid chromatography-coupled tandem mass spectrometry. Results were validated by semi-quantitative western blotting. MAIN RESULTS AND THE ROLE OF CHANCE: A total of 1585, 1656 and 1476 proteins were identified in macro-, micro-and nanovesicles, respectively. One thousand one hundred and twenty-five proteins were shared between all three fractions while up to 223 proteins were unique to each fraction. Gene Ontology pathway analysis showed an enrichment of proteins involved in vesicle transport and inflammation in all three fractions of EVs. The expression levels of proteins involved in internalization of vesicles (annexin V, calreticulin, CD31, CD47), the complement pathway [C3, decay-accelerating factor (DAF), membrane cofactor protein (MCP), protectin] and minor histocompatibility antigens [ATP-dependent RNA helicase (DDX3), ribosomal protein S4 (RPS4)] were different between different-sized EVs. LIMITATIONS, REASONS FOR CAUTION: This study is largely hypothesis-generating in nature. It is important to validate these findings using EVs isolated from maternal plasma and the function of the different EV fractions would need further investigation. WIDER IMPLICATIONS OF THE FINDINGS: Our results support the concept that various EV factions can interact with different maternal cells and have unique effects to mediate feto-maternal communication during early pregnancy. This study also provides a list of candidate proteins, which may inform the identification of robust markers that can be used to isolate placental vesicles from the maternal blood in the future.
  •  
4.
  •  
5.
  •  
6.
  • Tong, Mancy, et al. (author)
  • Antiphospholipid antibodies increase the levels of mitochondrial DNA in placental extracellular vesicles: Alarmin-g for preeclampsia
  • 2017
  • In: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Journal article (peer-reviewed)abstract
    • The pathogenesis of preeclampsia remains unclear but placental factors are known to play a crucial role causing maternal endothelial cell dysfunction. One potential factor is placental micro-and nano-vesicles. Antiphospholipid antibodies (aPL) increase the risk of preeclampsia ten-fold, in part by damaging the mitochondria in the syncytiotrophoblast. Since mitochondrial DNA (mtDNA) is a danger-associated molecular pattern (DAMP/alarmin) that may activate endothelial cells, the aims of the current study were to investigate whether aPL affect the number of placental vesicles extruded, their mtDNA content and their ability to activate endothelial cells. Exposure of first trimester human placental explants to aPL affected neither the number nor size of extruded micro-and nano-vesicles (n = 5), however their levels of mtDNA were increased (n = 6). These vesicles significantly activated endothelial cells (n = 5), which was prevented by blocking toll-like receptor 9 (TLR-9), a receptor for extracellular DNA. Thus, aPL may increase the risk of preeclampsia in part by increasing the amount of mtDNA associated with placental vesicles. That mitochondrial DNA is recognised as a DAMP by TLR-9 to cause endothelial cell activation, raises the possibility that placental vesicles or TLR-9 might be a target for pharmaceutical intervention to reduce the consequences of aPL in pregnancy.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view