SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chang Jui Che) "

Sökning: WFRF:(Chang Jui Che)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Bairagi, Samiran, et al. (författare)
  • Formation of quaternary Zn(AlxGa1−x)2O4 epilayers driven by thermally induced interdiffusion between spinel ZnGa2O4 epilayer and Al2O3 substrate
  • 2023
  • Ingår i: Materials Today Advances. - : Elsevier. - 2590-0498. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc aluminogallate, Zn(AlxGa1−x)2O4 (ZAGO), a single-phase spinel structure, offers considerable potential for high-performance electronic devices due to its expansive compositional miscibility range between aluminum (Al) and gallium (Ga). Direct growth of high-quality ZAGO epilayers however remains problematic due to the high volatility of zinc (Zn). This work highlights a novel synthesis process for high-quality epitaxial quaternary ZAGO thin films on sapphire substrates, achieved through thermal annealing of a ZnGa2O4 (ZGO) epilayer on sapphire in an ambient air setting. In-situ annealing x-ray diffraction measurements show that the incorporation of Al in the ZGO epilayer commenced at 850 °C. The Al content (x) in ZAGO epilayer gradually increased up to around 0.45 as the annealing temperature was raised to 1100 °C, which was confirmed by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy. X-ray rocking curve measurement revealed a small full width at half maximum value of 0.72 °, indicating the crystal quality preservation of the ZAGO epilayer with a high Al content. However, an epitaxial intermediate �–(AlxGa1−x)2O3 layer (� - AGO) was formed between the ZAGO and sapphire substrate. This is believed to be a consequence of the interdiffusion of Al and Ga between the ZGO thin film and sapphire substrate. Using density functional theory, the substitution cost of Ga in sapphire was determined to be about 0.5 eV lower than substitution cost of Al in ZGO. Motivated by this energetically favorable substitution, a formation mechanism of the ZAGO and AGO layers was proposed. Spectroscopic ellipsometry studies revealed an increase in total thickness of the film from 105.07 nm (ZGO) to 147.97 nm (ZAGO/AGO) after annealing to 1100 °C, which were corroborated using TEM. Furthermore, an observed increase in the direct (indirect) optical bandgap from 5.06 eV (4.7 eV) to 5.72 eV (5.45 eV) with an increasing Al content in the ZAGO layer further underpins the formation of a quaternary ZAGO alloy with a tunable composition.
  •  
3.
  • Chang, Jui-Che, 1996- (författare)
  • Controlled growth of metastable Ta3N5 semiconducting films
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The semiconductor tritantalum pentanitride (Ta3N5) is a promising material for green energy applications, specifically in the photoelectrolysis of water to produce oxygen and hydrogen. With a bandgap of approximately 2 eV, Ta3N5 is well-suited for efficient solar light absorption across a broad spectrum, and its band positions align favorably with the redox potential of water. Theoretically, this material could achieve a solar-to-hydrogen efficiency of up to 15.9%. However, the intricate nature of the Ta-N compounds and its metastability have limited research into the development of high-quality Ta3N5.   In this thesis, the metastable Ta3N5 films were grown using two types of reactive magnetron sputtering techniques, direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS). Several key parameters were found to stabilize the formation of Ta3N5 phase, including the amount of oxygen in a gas mixture of Ar and N2, total working pressure, the Ta2O5 seed layer, and Ar/N2 partial pressure ratio.   First, sputter growth of Ta-N film using a gas mixture of Ar and N2 without oxygen gas, only metallic -TaN and ε-TaN phase were formed. After introducing a small amount of oxygen in the process gas (~2% of total working pressure), the oxygen atoms, with higher electronegativity, replace nitrogen atoms to trigger and stabilize the formation of crystalline Ta3N5-type structure. In addition, with a suitable Ar/N2 partial pressure ratio for Ta3N5 formation, a low-degree fiber-textural orthorhombic Ta3N5 film was formed at the total working pressure range from 5 to 30 mTorr. At 40 mTorr total working pressure, the deposited film transforms to O-rich amorphous Ta-O-N compound. Second, the effect of Ta2O5 seed layer on the control of Ta-N phase was studied. The Ta3N5 phase can be grown only with a Ta2O5 seed layer assistance. Without the seed layer, only metallic TaN phases were formed no matter if the film was grown with or without oxygen assistance. Furthermore, domain epitaxial growth of Ta3N5 film on sapphire substrate was achieved through the control of seed layer’s thickness and crystallinity. While the film was grown on an amorphous TaOx seed layer, the Ta3N5 structure becomes polycrystalline. Third, the formation mechanism and epitaxial growth were studied through microstructural analysis in combination of first-principle density-functional theory calculations. Time-dependent growth evolution of Ta3N5 films combined with HRTEM and EDX measurement revealed that the nitridation of Ta2O5 seed layer and Ta-N film deposition occurs simultaneously at the beginning of the Ta3N5 deposition. Further deposition, the Ta3N5 layer was dominated by {00k} domain mixed with (113) domain with a thin TaN layer between Ta3N5 layer and substrate. Last, various Ta-N compounds were grown via controlling the Ar/N2 partial pressure ratio and total working pressure. When the reactive gas was changed from pure Ar to pure nitrogen, the deposited films transformed from Ta metal (mixed with TaOx), TaN, TaN mixed with Ta3N5 to polycrystalline Ta3N5 phase. To summarize the work conducted in this thesis, I have established a reproducible and precise method for cultivating metastable Ta3N5 through the magnetron sputter deposition technique. The elucidated growth mechanism holds promise for synthesizing Ta3N5 on diverse substrates using alternative techniques, ensuring a controlled and adaptable approach. 
  •  
4.
  • Chang, Jui-Che, et al. (författare)
  • Domain epitaxial growth of Ta3N5 film on c-plane sapphire substrate
  • 2022
  • Ingår i: Surface & Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 443
  • Tidskriftsartikel (refereegranskat)abstract
    • Tritantalum pentanitride (Ta3N5) semiconductor is a promising material for photoelectrolysis of water with high efficiency. Ta3N5 is a metastable phase in the complex system of TaN binary compounds. Growing stabilized single-crystal Ta3N5 films is correspondingly challenging. Here, we demonstrate the growth of a nearly single-crystal Ta3N5 film with epitaxial domains on c-plane sapphire substrate, Al2O3(0001), by magnetron sputter epitaxy. Introduction of a small amount ~2% of O2 into the reactive sputtering gas mixed with N2 and Ar facilitates the formation of a Ta3N5 phase in the film dominated by metallic TaN. In addition, we indicate that a single-phase polycrystalline Ta3N5 film can be obtained with the assistance of a Ta2O5 seed layer. With controlling thickness of the seed layer smaller than 10 nm and annealing at 1000 °C, a crystalline β phase Ta2O5 was formed, which promotes the domain epitaxial growth of Ta3N5 films on Al2O3(0001). The mechanism behind the stabilization of the orthorhombic Ta3N5 structure resides in its stacking with the ultrathin seed layer of orthorhombic β-Ta2O5, which is energetically beneficial and reduces the lattice mismatch with the substrate.
  •  
5.
  • Chang, Jui-Che, et al. (författare)
  • HiPIMS-grown AlN buffer for threading dislocation reduction in DC-magnetron sputtered GaN epifilm on sapphire substrate
  • 2023
  • Ingår i: Vacuum. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0042-207X .- 1879-2715. ; 217
  • Tidskriftsartikel (refereegranskat)abstract
    • Gallium nitride (GaN) epitaxial films on sapphire (Al2O3) substrates have been grown using reactive magnetron sputter epitaxy with a liquid Ga target. Threading dislocations density (TDD) of sputtered GaN films was reduced by using an inserted high-quality aluminum nitride (AlN) buffer layer grown by reactive high power impulse magnetron sputtering (R-HiPIMS) in a gas mixture of Ar and N2. After optimizing the Ar/N2 pressure ratio and deposition power, a high-quality AlN film exhibiting a narrow full-width at half-maximum (FWHM) value of the double-crystal x-ray rocking curve (DCXRC) of the AlN(0002) peak of 0.086° was obtained by R-HiPIMS. The mechanism giving rise the observed quality improvement is attributed to the enhancement of kinetic energy of the adatoms in the deposition process when operated in a transition mode. With the inserted HiPIMS-AlN as a buffer layer for direct current magnetron sputtering (DCMS) GaN growth, the FWHM values of GaN(0002) and (10 1‾ 1) XRC decrease from 0.321° to 0.087° and from 0.596° to 0.562°, compared to the direct growth of GaN on sapphire, respectively. An order of magnitude reduction from 2.7 × 109 cm−2 to 2.0 × 108 cm−2 of screw-type TDD calculated from the FWHM of the XRC data using the inserted HiPIMS-AlN buffer layer demonstrates the improvement of crystal quality of GaN. The result of TDD reduction using the HiPIMS-AlN buffer was also verified by weak beam dark-field (WBDF) cross-sectional transmission electron microscopy (TEM).
  •  
6.
  • Chang, Jui-Che (författare)
  • Metastable orthorhombic Ta3N5 thin films grown by magnetron sputter epitaxy
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The semiconductor tritantalum pentanitride (Ta3N5) is a promising green-energy material for photoelectrolyzing water to produce oxygen and hydrogen owing to its proper bandgap of 2.0 ± 0.2 eV and band positions to redox potential of water. Compare with the conventional setup of water splitting, such as TiO2, Fe2O3, Cu2O, and WO3, the Ta3N5 shows a proper band gap, which leads to a theoretical efficiency as high as 15.9%. However, the complexity of the Ta-N system and the metastability of the Ta3N5 result in the limited research of the growth of high quality stoichiometric Ta3N5.Conventionally, the two-step growth of oxidation and nitridation of a metal Ta using thermal annealing in oxygen and ammonia environment is used to produce the Ta3N5. However, the amount of incorporated oxygen in the Ta3N5 samples and film’s thickness and interface are hardly to be controlled, and the use of ammonia as the nitridation gas is harmful to the environment. Hence, in this thesis work, the reactive magnetron sputtering is used to synthesis the Ta3N5, which demonstrates some advantages, such as possibility to grow on a substrate with nanostructure on the surface, a simplification of growth process, usage of environmental-friendly reactive gas, and even scaling up to the industrial application.The thesis presents a successful growth of orthorhombic Ta3N5-type Ta-O-N compound thin films on Si and sapphire substrates, specifically Ta3-xN5-yOy, using reactive magnetron sputtering with a gas mixture of Ar, N2, and O2. In the deposition process, the total working pressure was increasing from 5 to 40 mTorr, while keeping same partial pressure ratio (Ar: N2: O2 = 3: 2: 0.1). When the total pressure in the region between 5-30 mTorr, a low-degree fiber-textural Ta3-xN5-yOy films were grown. In addition, with the characterization of elastic recoil detection analysis (ERDA), the atomic fraction of O, N, and Ta of as-grown Ta3-xN5-yOy films were found varying from 0.02 to 0.15, 0.66 to 0.54, and 0.33 to 0.31, respectively, which leads to a b-lattice constant decrease around 1.3 %, shown in X-ray diffraction (XRD) results. For a total working pressure up to 40 mTorr, an amorphous O-rich Ta-O-N compound film was formed mixed with non-stoichiometric TaON and Ta2O5, which further raised the oxygen atomic fraction to ~0.48. The increasing total working pressure results in an increasing band gap from 2.22 to 2.66 eV of Ta3-xN5-yOy films, and further increasing to around 2.96 eV of O-rich Ta-O-N compound films. The mechanism of increasing oxygen atomic fraction in the film is founded correlated with the forming oxide on the Ta target surface during the deposition process due to the strong reactivity of O to Ta by the characterization of optical emission spectroscopy (OES). Moreover, the sputter yield was reduced due to the target poisoning, and which is evidenced by both plasma analysis and depth profile from ERDA.A further studies with the deposition parameters for nearly pure Ta3N5 films (oxygen atomic fraction ~2%) was performed using c-axis oriented Al2O3 substrate. In this research, it is found that a Ta2O5 seed layer and a small amount of oxygen were necessary for the growth of Ta3N5. Without the help of seed layer and oxygen, only metallic TaN phases, either mixture of ε- and δ- TaN or δ-TaN were grown, evidenced by X-ray photoelectron spectroscopy (XPS). Furthermore, the structure and phase purity of Ta3N5-phase dominated films was found highly correlated with the thickness of the Ta2O5 seed layer. With the increasing thickness of the seed layer from 5, 9, to 17 nm, the composition of grown films was changed from 111-oriented δ-TaN mixed with c-axis oriented Ta3N5, c-axis oriented Ta3N5, to polycrystalline Ta3N5. In addition, the azimuthal φ-scans in grazing incident geometry demonstrates that the c-axis oriented Ta3N5 contained epitaxially three-variant-orientation domains, in which the a and b planes parallel to the m and a planes of c-axis oriented Al2O3. With the simulation of density functional theory (DFT), the growth of thin seed layers of orthorhombic Ta2O5 (β-Ta2O5) was found promoting by introducing a small amount of oxygen, after calculating the interplay between the topological and energy selection criteria. By the co-action of the mentioned criteria, this already grown Ta2O5 seed layer favored the growth of the orthorhombic Ta3N5 phase. Hence, the mechanism of the domain epitaxial growth of c-axis oriented Ta3N5 on c-axis oriented Al2O3 is attributed to the similar atomic arrangement Ta3N5(001) and β-Ta2O5(201) with a small lattice mismatch around of 2.6% and 4.5%, for the interface of film/seed layer and seed layer/substrate, respectively, and a favorable energetic interaction between involved materials.
  •  
7.
  • Chang, Jui-Che, et al. (författare)
  • Orthorhombic Ta3-xN5-yOy thin films grown by unbalanced magnetron sputtering : The role of oxygen on structure, composition, and optical properties
  • 2021
  • Ingår i: Surface & Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 406
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct growth of orthorhombic Ta3N5-type Ta-O-N compound thin films, specifically Ta3-xN5-yOy, on Si and sapphire substrates with various atomic fractions is realized by unbalanced magnetron sputtering. Low-degree fiber-textural Ta3-xN5-yOy films were grown through reactive sputtering of Ta in a gas mixture of N-2, Ar, and O-2 with keeping a partial pressure ratio of 3:2:0.1 in a total working pressure range of 5-30 mTorr. With increasing total pressure from 5 to 30 mTorr, the atomic fraction of O in the as-grown Ta3-xN5-yOy films was found to increase from 0.02 to 0.15 while that of N and Ta decrease from 0.66 to 0.54 and 0.33 to 0.31, respectively, leading to a decrease in b lattice constant up to around 1.3%. Metallic TaNx phases were formed without oxygen. For a working pressure of 40 mTorr, an amorphous, O-rich Ta-N-O compound film with a high O fraction of similar to 0.48, was formed, mixed with non-stoichiometric TaON and Ta2O5. By analyzing the plasma discharge, the increasing O incorporation is associated with oxide formation on top of the Ta target due to a higher reactivity of Ta with O than with N. The increase of O incorporation in the films also leads to a optical bandgap widening from similar to 2.22 to similar to 2.96 eV, which is in agreement with the compositional and structural changes from a crystalline Ta3-xN5-yOy to an amorphous O-rich Ta-O-N compound.
  •  
8.
  • Horng, Ray-Hua, et al. (författare)
  • Growth and Characterization of Sputtered InAlN Nanorods on Sapphire Substrates for Acetone Gas Sensing
  • 2024
  • Ingår i: Nanomaterials. - : MDPI. - 2079-4991. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The demand for highly sensitive and selective gas sensors has been steadily increasing, driven by applications in various fields such as environmental monitoring, healthcare, and industrial safety. In this context, ternary alloy indium aluminum nitride (InAlN) semiconductors have emerged as a promising material for gas sensing due to their unique properties and tunable material characteristics. This work focuses on the fabrication and characterization of InAlN nanorods grown on sapphire substrates using an ultra-high vacuum magnetron sputter epitaxy with precise control over indium composition and explores their potential for acetone-gas-sensing applications. Various characterization techniques, including XRD, SEM, and TEM, demonstrate the structural and morphological insights of InAlN nanorods, making them suitable for gas-sensing applications. To evaluate the gas-sensing performance of the InAlN nanorods, acetone was chosen as a target analyte due to its relevance in medical diagnostics and industrial processes. The results reveal that the InAlN nanorods exhibit a remarkable sensor response of 2.33% at 600 ppm acetone gas concentration at an operating temperature of 350 degrees C, with a rapid response time of 18 s. Their high sensor response and rapid response make InAlN a viable candidate for use in medical diagnostics, industrial safety, and environmental monitoring.
  •  
9.
  • Lo, Yi-Ling, et al. (författare)
  • Determination of effective Ga/N ratio to control GaN growth behavior in liquid-target reactive magnetron sputter epitaxy
  • 2024
  • Ingår i: Materials Science in Semiconductor Processing. - : ELSEVIER SCI LTD. - 1369-8001 .- 1873-4081. ; 176
  • Tidskriftsartikel (refereegranskat)abstract
    • The optimization of magnetron sputter epitaxy (MSE) for the high -volume production of high -quality GaN films is increasingly important. This study concerns the influence of key MSE process parameters - including the partial pressure of process gas, target -to -substrate distance (TSD), and growth temperature (TG) - for the synthesis of GaN thin films using a liquid Ga target. It is observed that the effective Ga/N ratio on the substrate surface determines the film's growth behavior and affects material's composition and luminescence properties. A lower Ar/N2 partial pressure ratio substantially enhances the crystalline quality, evidenced by the reduction in peak width of x-ray rocking curves from approximately 1.25 degrees (N -rich regime) to 0.35 degrees (Ga-rich regime) and improved GaN bandgap emission. While target sputtered in a highly Ga-rich condition significantly reduces the GaN growth rate (R), primarily due to Ga desorption in nitrogen -limited condition at elevated TG. Ion mass spectrometry and rate monitor measurements demonstrate that the Ga/N ratio can be controlled by adjusting Ar/N2 pressure ratio in MSE process. A reduction in TSD from 9.3 cm to 7 cm resulted in an increased R from 541 nm/h to 731 nm/h, corroborated by Simulation of Metal Transport (SIMTRA) analysis. Temperature -dependent studies revealed that films grown above 900 degrees C exhibited flat surface with high crystalline quality.
  •  
10.
  • Zeng, Hui, et al. (författare)
  • Interface-Engineered InAlN/Cu2O Photocathode with Accelerated Charge Separation for Boosting Photoelectrochemical Water Splitting
  • 2024
  • Ingår i: Solar RRL. - : WILEY-V C H VERLAG GMBH. - 2367-198X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Cu2O has emerged as a promising material for sustainable hydrogen production through photoelectrochemical (PEC) water splitting, while inefficient charge separation remains one of the main challenges hindering its development. In this work, a new architecture of InAlN/Cu2O heterojunction photocathode is demonstrated by combining n-type InAlN and p-type Cu2O to improve the charge separation efficiency, thus enhancing PEC water-splitting performance. The Pt/InAlN/Cu2O photoelectrode exhibits a photocurrent density of 2.54 mA cm−2 at 0 V versus reversible hydrogen electrode (VRHE), which is 3.21 times higher than that of Cu2O (0.79 mA cm−2 at VRHE). The enhanced PEC performance is explained by the larger built-in potential Vbi of 1.43 V formed at the InAlN/Cu2O p–n junction than that in the single Cu2O photocathode (Vbi < 0.77 V), which improves the separation of the photogenerated carriers and thus relieves the bottlenecks of charge-transfer kinetics at the electrode bulk and electrode/electrolyte interface. In this work, an avenue is opened for designing III-nitrides/Cu2O heterojunction toward solar energy conversion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (8)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Järrendahl, Kenneth (2)
Birch, Jens (2)
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Hultman, Lars (1)
visa fler...
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
Primetzhofer, Daniel (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Backman, Lars (1)
Yan, Hong (1)
Shieh, Jia-Min (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Wang, Jun (1)
Pollesello, Piero (1)
Conesa, Ana (1)
El-Esawi, Mohamed A. (1)
Zhang, Weijia (1)
Li, Jian (1)
Rosén, Johanna (1)
Marinello, Francesco (1)
Frilander, Mikko J. (1)
Wei, Pan (1)
Lundin, Daniel, 1980 ... (1)
Badie, Christophe (1)
Zhao, Jing (1)
Sortica, Mauricio A. (1)
Li, You (1)
Bansal, Abhisheka (1)
Rahman, Proton (1)
Parchi, Piero (1)
Polz, Martin (1)
Ijzerman, Adriaan P. (1)
visa färre...
Lärosäte
Linköpings universitet (9)
Uppsala universitet (2)
Lunds universitet (2)
Göteborgs universitet (1)
Högskolan i Halmstad (1)
Stockholms universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Teknik (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy