SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chaplin W.) "

Sökning: WFRF:(Chaplin W.)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdo, A. A., et al. (författare)
  • A limit on the variation of the speed of light arising from quantum gravity effects
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 462:7271, s. 331-334
  • Tidskriftsartikel (refereegranskat)abstract
    • A cornerstone of Einstein’s special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, lPlanck~1.62×10-33cm or EPlanck = MPlanckc2~1.22×1019GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves. Here we report the detection of emission up to ~31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2EPlanck on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of lPlanck/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.
  •  
2.
  • Abdo, A. A., et al. (författare)
  • Fermi Observations of High-energy Gamma-ray Emission from GRB 080825C
  • 2009
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 707:1, s. 580-592
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.
  •  
3.
  • Ackermann, M., et al. (författare)
  • DETECTION OF A SPECTRAL BREAK IN THE EXTRA HARD COMPONENT OF GRB 090926A
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 729:2, s. 114-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, here we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.
  •  
4.
  • Ackermann, M., et al. (författare)
  • Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6166, s. 42-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.
  •  
5.
  • Rauer, H., et al. (författare)
  • The PLATO 2.0 mission
  • 2014
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Tidskriftsartikel (refereegranskat)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
6.
  • Miglio, A., et al. (författare)
  • PLATO as it is : A legacy mission for Galactic archaeology
  • 2017
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - : WILEY-V C H VERLAG GMBH. - 0004-6337 .- 1521-3994. ; 338:6, s. 644-661
  • Tidskriftsartikel (refereegranskat)abstract
    • Deciphering the assembly history of the Milky Way is a formidable task, which becomes possible only if one can produce high-resolution chrono-chemo-kinematical maps of the Galaxy. Data from large-scale astrometric and spectroscopic surveys will soon provide us with a well-defined view of the current chemo-kinematical structure of the Milky Way, but it will only enable a blurred view on the temporal sequence that led to the present-day Galaxy. As demonstrated by the (ongoing) exploitation of data from the pioneering photometric missions CoRoT, Kepler, and K2, asteroseismology provides the way forward: solar-like oscillating giants are excellent evolutionary clocks thanks to the availability of seismic constraints on their mass and to the tight age-initial mass relation they adhere to. In this paper we identify five key outstanding questions relating to the formation and evolution of the Milky Way that will need precise and accurate ages for large samples of stars to be addressed, and we identify the requirements in terms of number of targets and the precision on the stellar properties that are needed to tackle such questions. By quantifying the asteroseismic yields expected from PLATO for red giant stars, we demonstrate that these requirements are within the capabilities of the current instrument design, provided that observations are sufficiently long to identify the evolutionary state and allow robust and precise determination of acoustic-mode frequencies. This will allow us to harvest data of sufficient quality to reach a 10% precision in age. This is a fundamental prerequisite to then reach the more ambitious goal of a similar level of accuracy, which will be possible only if we have at hand a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics, a goal that conveniently falls within the main aims of PLATO's core science. We therefore strongly endorse PLATO's current design and proposed observational strategy, and conclude that PLATO, as it is, will be a legacy mission for Galactic archaeology.
  •  
7.
  • Preece, R., et al. (författare)
  • The First Pulse of the Extremely Bright GRB 130427A : A Test Lab for Synchrotron Shocks
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6166, s. 51-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.
  •  
8.
  • Kim, HyeJin, et al. (författare)
  • Towards a better future for biodiversity and people : Modelling Nature Futures
  • 2023
  • Ingår i: Global Environmental Change. - 0959-3780 .- 1872-9495. ; 82
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nature Futures Framework (NFF) is a heuristic tool for co-creating positive futures for nature and people. It seeks to open up a diversity of futures through mainly three value perspectives on nature - Nature for Nature, Nature for Society, and Nature as Culture. This paper describes how the NFF can be applied in modelling to support decision-making. First, we describe key considerations for the NFF in developing qualitative and quantitative scenarios: i) multiple value perspectives on nature as a state space where pathways improving nature toward a frontier can be represented, ii) mutually reinforcing key feedbacks of social-ecological systems that are important for nature conservation and human wellbeing, iii) indicators of multiple knowledge systems describing the evolution of complex social-ecological dynamics. We then present three approaches to modelling Nature Futures scenarios in the review, screening, and design phases of policy processes. This paper seeks to facilitate the integration of relational values of nature in models and strengthen modelled linkages across biodiversity, nature's contributions to people, and quality of life.
  •  
9.
  • Lichtenberg, Elinor M., et al. (författare)
  • A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:11, s. 4946-4957
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.
  •  
10.
  • Valentini, M, et al. (författare)
  • RAVE stars in K2 : I. Improving RAVE red giants spectroscopy using asteroseismology from K2 Campaign 1
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a set of 87 RAVE stars with detected solar like oscillations, observed during Campaign 1 of the K2 mission (RAVE K2-C1 sample). This data set provides a useful benchmark for testing the gravities provided in RAVE data release 4 (DR4), and is key for the calibration of the RAVE data release 5 (DR5). The RAVE survey collected medium-resolution spectra (R = 7500) centred in the Ca II triplet(8600 Å) wavelength interval, which although being very useful for determining radial velocity and metallicity, even at low S/N, is known be affected by a log (g)-Teff degeneracy. This degeneracy is the cause of the large spread in the RAVE DR4 gravities for giants. The understanding of the trends and offsets that affects RAVE atmospheric parameters, and in particular log (g), is a crucial step in obtaining not only improved abundance measurements, but also improved distances and ages. In the present work, we use two different pipelines, GAUFRE and Sp-Ace, to determine atmospheric parameters and abundances by fixing log (g) to the seismic one. Our strategy ensures highly consistent values among all stellar parameters, leading to more accurate chemical abundances. A comparison of the chemical abundances obtained here with and without the use of seismic log (g) information has shown that an underestimated (overestimated) gravity leads to an underestimated (overestimated) elemental abundance (e.g. [Mg/H] is underestimated by ∼0.25 dex when the gravity is underestimated by 0.5 dex). We then perform a comparison between the seismic gravities and the spectroscopic gravities presented in the RAVE DR4 catalogue, extracting a calibration for log (g) of RAVE giants in the colour interval 0.50 < (J-KS) < 0.85. Finally, we show a comparison of the distances, temperatures, extinctions (and ages) derived here for our RAVE K2-C1 sample with those derived in RAVE DR4 and DR5. DR5 performs better than DR4 thanks to the seismic calibration, although discrepancies can still be important for objects for which the difference between DR4/DR5 and seismic gravities differ by more than ∼0.5 dex. The method illustrated in this work will be used for analysing RAVE targets present in the other K2 campaigns, in the framework of Galactic Archaeology investigations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25
Typ av publikation
tidskriftsartikel (23)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Connaughton, V. (7)
von Kienlin, A. (7)
Wilson-Hodge, C. (7)
Bissaldi, E. (7)
Guiriec, S. (7)
Briggs, M. S. (6)
visa fler...
Ohsugi, T. (5)
Winer, B. L. (5)
Ackermann, M. (5)
Kocevski, D. (5)
Gehrels, N. (5)
De Angelis, A. (5)
Hanabata, Y. (5)
Hayashida, M. (5)
Longo, F. (5)
Paneque, D. (5)
Torres, D. F. (5)
Razzaque, S. (5)
Bregeon, J. (5)
Reimer, O. (5)
Tibaldo, L. (5)
de Palma, F. (5)
Baldini, L. (5)
Barbiellini, G. (5)
Bellazzini, R. (5)
Bruel, P. (5)
Caliandro, G. A. (5)
Cameron, R. A. (5)
Caraveo, P. A. (5)
Cecchi, C. (5)
Chiang, J. (5)
Ciprini, S. (5)
Cohen-Tanugi, J. (5)
Favuzzi, C. (5)
Fusco, P. (5)
Gargano, F. (5)
Giglietto, N. (5)
Giordano, F. (5)
Loparco, F. (5)
Lovellette, M. N. (5)
Lubrano, P. (5)
Mazziotta, M. N. (5)
Michelson, P. F. (5)
Mizuno, T. (5)
Morselli, A. (5)
Nuss, E. (5)
Pesce-Rollins, M. (5)
Piron, F. (5)
Porter, T. A. (5)
Raino, S. (5)
visa färre...
Lärosäte
Stockholms universitet (10)
Lunds universitet (7)
Kungliga Tekniska Högskolan (6)
Göteborgs universitet (3)
Uppsala universitet (3)
Linnéuniversitetet (2)
visa fler...
Karolinska Institutet (2)
Umeå universitet (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy