SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Charman William N.) "

Sökning: WFRF:(Charman William N.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergström, Christel A. S., et al. (författare)
  • Computational prediction of formulation strategies for beyond-rule-of-5 compounds
  • 2016
  • Ingår i: Advanced Drug Delivery Reviews. - : Elsevier BV. - 0169-409X .- 1872-8294. ; 101, s. 6-21
  • Forskningsöversikt (refereegranskat)abstract
    • The physicochemical properties of some contemporary drug candidates are moving towards higher molecular weight, and coincidentally also higher lipophilicity in the quest for biological selectivity and specificity. These physicochemical properties move the compounds towards beyond rule-of-5 (B-r-o-5) chemical space and often result in lower water solubility. For such B-r-o-5 compounds non-traditional delivery strategies (i.e. those other than conventional tablet and capsule formulations) typically are required to achieve adequate exposure after oral administration. In this review, we present the current status of computational tools for prediction of intestinal drug absorption, models for prediction of the most suitable formulation strategies for B-r-o-5 compounds and models to obtain an enhanced understanding of the interplay between drug, formulation and physiological environment. In silico models are able to identify the likely molecular basis for low solubility in physiologically relevant fluids such as gastric and intestinal fluids. With this baseline information, a formulation scientist can, at an early stage, evaluate different orally administered, enabling formulation strategies. Recent computational models have emerged that predict glass-forming ability and crystallisation tendency and therefore the potential utility of amorphous solid dispersion formulations. Further, computational models of loading capacity in lipids, and therefore the potential for formulation as a lipid-based formulation, are now available. Whilst such tools are useful for rapid identification of suitable formulation strategies, they do not reveal drug localisation and molecular interaction patterns between drug and excipients. For the latter, Molecular Dynamics simulations provide an insight into the interplay between drug, formulation and intestinal fluid. These different computational approaches are reviewed. Additionally, we analyse the molecular requirements of different targets, since these can provide an early signal that enabling formulation strategies will be required. Based on the analysis we conclude that computational biopharmaceutical profiling can be used to identify where non-conventional gateways, such as prediction of 'formulate-ability' during lead optimisation and early development stages, are important and may ultimately increase the number of orally tractable contemporary targets.
  •  
2.
  • Feeney, Orlagh M, et al. (författare)
  • 50 years of oral lipid-based formulations : Provenance, progress and future perspectives
  • 2016
  • Ingår i: Advanced Drug Delivery Reviews. - : Elsevier BV. - 0169-409X .- 1872-8294. ; 101, s. 167-194
  • Forskningsöversikt (refereegranskat)abstract
    • Lipid based formulations (LBF) provide well proven opportunities to enhance the oral absorption of drugs and drug candidates that sit close to, or beyond, the boundaries of Lipinski's 'rule-of-five' chemical space. Advantages in permeability, efflux and pre-systemic metabolism are evident; however, the primary benefit is in increases in dissolution and apparent intestinal solubility for lipophilic, poorly water soluble drugs. This review firstly details the inherent advantages of LBF, their general properties and classification and provides a brief retrospective assessment of the development of LBF over the past fifty years. More detailed analysis of the ability of LBF to promote intestinal solubilisation, supersaturation and absorption is then provided alongside review of the methods employed to assess formulation performance. Critical review of the ability of simple dispersion and more complex in vitro digestion methods to predict formulation performance subsequently reveals marked differences in the correlative ability of in vitro tests, depending on the properties of the drug involved. Notably, for highly permeable low melting drugs e.g. fenofibrate, LBF appear to provide significant benefit in all cases, and sustained on-going solubilisation may not be required. In other cases, and particularly for higher melting point drugs such as danazol, where re-dissolution of crystalline precipitate drug is likely to be slow, correlations with on-going solubilisation and supersaturation are more evident. In spite of their potential benefits, one limitation to broader use of LBF is low drug solubility in the excipients employed to generate formulations. Techniques to increase drug lipophilicity and lipid solubility are therefore explored, and in particular those methods that provide for temporary enhancement including lipophilic ionic liquid and prodrug technologies. The transient nature of these lipophilicity increases enhances lipid solubility and LBF viability, but precludes enduring effects on receptor promiscuity and off target toxicity. Finally, recent efforts to generate solid LBF are briefly described as a means to circumvent the need to encapsulate in soft or hard gelatin capsules, although the latter remain popular with consumers and a proven means of LBF delivery.
  •  
3.
  • Matsson, Pär, et al. (författare)
  • A Tribute to Professor Per Artursson - Scientist, Explorer, Mentor, Innovator, and Giant in Pharmaceutical Research
  • 2021
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier. - 0022-3549 .- 1520-6017. ; 110:1, s. 2-11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • This issue of the Journal of Pharmaceutical Sciences is dedicated to Professor Per Artursson and the groundbreaking contributions he has made and continues to make in the Pharmaceutical Sciences. Per is one of the most cited researchers in his field, with more than 30,000 citations and an h-index of 95 as of September 2020. Importantly, these citations are distributed over the numerous fields he has explored, clearly showing the high impact the research has had on the discipline. We provide a short portrait of Per, with emphasis on his personality, driving forces and the inspirational sources that shaped his career as a world-leading scientist in the field. He is a curious scientist who deftly moves between disciplines and has continued to innovate, expand boundaries, and profoundly impact the pharmaceutical sciences throughout his career. He has developed new tools and provided insights that have significantly contributed to today’s molecular and mechanistic approaches to research in the fields of intestinal absorption, cellular disposition, and exposure-efficacy relationships of pharmaceutical drugs. We want to celebrate these important contributions in this special issue of the Journal of Pharmaceutical Sciences in Per’s honor.
  •  
4.
  • Persson, Linda C., et al. (författare)
  • Computational Prediction of Drug Solubility in Lipid Based Formulation Excipients
  • 2013
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 30:12, s. 3225-3237
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate if drug solubility in pharmaceutical excipients used in lipid based formulations (LBFs) can be predicted from physicochemical properties. Solubility was measured for 30 structurally diverse drug molecules in soybean oil (SBO, long-chain triglyceride; TG(LC)), Captex355 (medium-chain triglyceride; TG(MC)), polysorbate 80 (PS80; surfactant) and PEG400 co-solvent and used as responses during PLS model development. Melting point and calculated molecular descriptors were used as variables and the PLS models were validated with test sets and permutation tests. Solvation capacity of SBO and Captex355 was equal on a mol per mol scale (R (2) = 0.98). A strong correlation was also found between PS80 and PEG400 (R (2) = 0.85), identifying the significant contribution of the ethoxylation for the solvation capacity of PS80. In silico models based on calculated descriptors were successfully developed for drug solubility in SBO (R (2) = 0.81, Q (2) = 0.76) and Captex355 (R (2) = 0.84, Q (2) = 0.80). However, solubility in PS80 and PEG400 were not possible to quantitatively predict from molecular structure. Solubility measured in one excipient can be used to predict solubility in another, herein exemplified with TG(MC) versus TG(LC), and PS80 versus PEG400. We also show, for the first time, that solubility in TG(MC) and TG(LC) can be predicted from rapidly calculated molecular descriptors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy