SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Charmantier Anne) "

Sökning: WFRF:(Charmantier Anne)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bailey, Liam D., et al. (författare)
  • Bird populations most exposed to climate change are less sensitive to climatic variation
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species’ range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species’ range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population.
  •  
2.
  • Moller, Anders Pape, et al. (författare)
  • Clutch-size variation in Western Palaearctic secondary hole-nesting passerine birds in relation to nest box design
  • 2014
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 5:4, s. 353-362
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary hole-nesting birds that do not construct nest holes themselves and hence regularly breed in nest boxes constitute important model systems for field studies in many biological disciplines with hundreds of scientists and amateurs involved. Those research groups are spread over wide geographic areas that experience considerable variation in environmental conditions, and researchers provide nest boxes of varying designs that may inadvertently introduce spatial and temporal variation in reproductive parameters. We quantified the relationship between mean clutch size and nest box size and material after controlling for a range of environmental variables in four of the most widely used model species in the Western Palaearctic: great tit Parus major, blue tit Cyanistes caeruleus, pied flycatcher Ficedula hypoleuca and collared flycatcher F.albicollis from 365 populations and 79610 clutches. Nest floor area and nest box material varied non-randomly across latitudes and longitudes, showing that scientists did not adopt a random box design. Clutch size increased with nest floor area in great tits, but not in blue tits and flycatchers. Clutch size of blue tits was larger in wooden than in concrete nest boxes. These findings demonstrate that the size of nest boxes and material used to construct nest boxes can differentially affect clutch size in different species. The findings also suggest that the nest box design may affect not only focal species, but also indirectly other species through the effects of nest box design on productivity and therefore potentially population density and hence interspecific competition.
  •  
3.
  • Moller, Anders P., et al. (författare)
  • Variation in clutch size in relation to nest size in birds
  • 2014
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:18, s. 3583-3595
  • Tidskriftsartikel (refereegranskat)abstract
    • Nests are structures built to support and protect eggs and/or offspring from predators, parasites, and adverse weather conditions. Nests are mainly constructed prior to egg laying, meaning that parent birds must make decisions about nest site choice and nest building behavior before the start of egg-laying. Parent birds should be selected to choose nest sites and to build optimally sized nests, yet our current understanding of clutch size-nest size relationships is limited to small-scale studies performed over short time periods. Here, we quantified the relationship between clutch size and nest size, using an exhaustive database of 116 slope estimates based on 17,472 nests of 21 species of hole and non-hole-nesting birds. There was a significant, positive relationship between clutch size and the base area of the nest box or the nest, and this relationship did not differ significantly between open nesting and hole-nesting species. The slope of the relationship showed significant intraspecific and interspecific heterogeneity among four species of secondary hole-nesting species, but also among all 116 slope estimates. The estimated relationship between clutch size and nest box base area in study sites with more than a single size of nest box was not significantly different from the relationship using studies with only a single size of nest box. The slope of the relationship between clutch size and nest base area in different species of birds was significantly negatively related to minimum base area, and less so to maximum base area in a given study. These findings are consistent with the hypothesis that bird species have a general reaction norm reflecting the relationship between nest size and clutch size. Further, they suggest that scientists may influence the clutch size decisions of hole-nesting birds through the provisioning of nest boxes of varying sizes.
  •  
4.
  • Radchuk, Viktoriia, et al. (författare)
  • Adaptive responses of animals to climate change are most likely insufficient
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.
  •  
5.
  • Vaugoyeau, Marie, et al. (författare)
  • Interspecific variation in the relationship between clutch size, laying date and intensity of urbanization in four species of hole-nesting birds
  • 2016
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 6:16, s. 5907-5920
  • Tidskriftsartikel (refereegranskat)abstract
    • The increase in size of human populations in urban and agricultural areas has resulted in considerable habitat conversion globally. Such anthropogenic areas have specific environmental characteristics, which influence the physiology, life history, and population dynamics of plants and animals. For example, the date of bud burst is advanced in urban compared to nearby natural areas. In some birds, breeding success is determined by synchrony between timing of breeding and peak food abundance. Pertinently, caterpillars are an important food source for the nestlings of many bird species, and their abundance is influenced by environmental factors such as temperature and date of bud burst. Higher temperatures and advanced date of bud burst in urban areas could advance peak caterpillar abundance and thus affect breeding phenology of birds. In order to test whether laying date advance and clutch sizes decrease with the intensity of urbanization, we analyzed the timing of breeding and clutch size in relation to intensity of urbanization as a measure of human impact in 199 nest box plots across Europe, North Africa, and the Middle East (i.e., the Western Palearctic) for four species of hole-nesters: blue tits (Cyanistes caeruleus), great tits (Parus major), collared flycatchers (Ficedula albicollis), and pied flycatchers (Ficedula hypoleuca). Meanwhile, we estimated the intensity of urbanization as the density of buildings surrounding study plots measured on orthophotographs. For the four study species, the intensity of urbanization was not correlated with laying date. Clutch size in blue and great tits does not seem affected by the intensity of urbanization, while in collared and pied flycatchers it decreased with increasing intensity of urbanization. This is the first large-scale study showing a species-specific major correlation between intensity of urbanization and the ecology of breeding. The underlying mechanisms for the relationships between life history and urbanization remain to be determined. We propose that effects of food abundance or quality, temperature, noise, pollution, or disturbance by humans may on their own or in combination affect laying date and/or clutch size.
  •  
6.
  •  
7.
  • Bonnet, Timothee, et al. (författare)
  • Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 376:6596, s. 1012-1016
  • Tidskriftsartikel (refereegranskat)abstract
    • The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.
  •  
8.
  • Brommer, Jon E., et al. (författare)
  • Passerine Extrapair Mating Dynamics : A Bayesian Modeling Approach Comparing Four Species
  • 2010
  • Ingår i: American Naturalist. - : University of Chicago Press. - 0003-0147 .- 1537-5323. ; 176:2, s. 178-187
  • Tidskriftsartikel (refereegranskat)abstract
    • In many socially monogamous animals, females engage in extrapair copulation (EPC), causing some broods to contain both within-pair and extrapair young (EPY). The proportion of all young that are EPY varies across populations and species. Because an EPC that does not result in EPY leaves no forensic trace, this variation in the proportion of EPY reflects both variation in the tendency to engage in EPC and variation in the extrapair fertilization (EPF) process across populations and species. We analyzed data on the distribution of EPY in broods of four passerines (blue tit, great tit, collared flycatcher, and pied flycatcher), with 18,564 genotyped nestlings from 2,346 broods in two to nine populations per species. Our Bayesian modeling approach estimated the underlying probability function of EPC (assumed to be a Poisson function) and conditional binomial EPF probability. We used an information theoretical approach to show that the expected distribution of EPC per female varies across populations but that EPF probabilities vary on the above-species level (tits vs. flycatchers). Hence, for these four passerines, our model suggests that the probability of an EPC mainly is determined by ecological (population-specific) conditions, whereas EPF probabilities reflect processes that are fixed above the species level.
  •  
9.
  • Culina, Antica, et al. (författare)
  • Connecting the data landscape of long-term ecological studies : The SPI-Birds data hub
  • 2021
  • Ingår i: Journal of Animal Ecology. - : John Wiley & Sons. - 0021-8790 .- 1365-2656. ; 90:9, s. 2147-2160
  • Tidskriftsartikel (refereegranskat)abstract
    • The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database ()-a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration.
  •  
10.
  • de Villemereuil, Pierre, et al. (författare)
  • Fluctuating optimum and temporally variable selection on breeding date in birds and mammals
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 117:50, s. 31969-31978
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal variation in natural selection is predicted to strongly impact the evolution and demography of natural populations, with consequences for the rate of adaptation, evolution of plasticity, and extinction risk. Most of the theory underlying these predictions assumes a moving optimum phenotype, with predictions expressed in terms of the temporal variance and auto-correlation of this optimum. However, empirical studies seldom estimate patterns of fluctuations of an optimum phenotype, precluding further progress in connecting theory with observations. To bridge this gap, we assess the evidence for temporal variation in selection on breeding date by modeling a fitness function with a fluctuating optimum, across 39 populations of 21 wild animals, one of the largest compilations of long-term datasets with individual measurements of trait and fitness components. We find compelling evidence for fluctuations in the fitness function, causing temporal variation in the magnitude, but not the direction of selection. However, fluctuations of the optimum phenotype need not directly translate into variation in selection gradients, because their impact can be buffered by partial tracking of the optimum by the mean phenotype. Analyzing individuals that reproduce in consecutive years, we find that plastic changes track movements of the optimum phenotype across years, especially in bird species, reducing temporal variation in directional selection. This suggests that phenological plasticity has evolved to cope with fluctuations in the optimum, despite their currently modest contribution to variation in selection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy