SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Charnley S. B.) "

Sökning: WFRF:(Charnley S. B.)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Meech, K. J., et al. (författare)
  • EPOXI: Comet 103P/Hartley 2 Observations from a Worldwide Campaign
  • 2011
  • Ingår i: Astrophysical Journal Letters. - London : IOP. - 2041-8213 .- 2041-8205. ; 734:L1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was ~16.4?hr. Starting in 2010 August the period changed from 16.6?hr to near 19?hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO 2 -driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.
  •  
2.
  •  
3.
  • Bockelée-Morvan, D., et al. (författare)
  • Cometary Isotopic Measurements
  • 2015
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 197:1-4, s. 47-83
  • Forskningsöversikt (refereegranskat)abstract
    • Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, 14N/15N, 16O/18O, 12C/13C, and 32S/34S ratios in cometary grains and gases, and discuss their cosmogonic implications. The review includes analyses of potential cometary material available in collections on Earth, recent measurements achieved with the Herschel Space Observatory, large optical telescopes, and Rosetta, as well as recent results obtained from models of chemical-dynamical deuterium fractionation in the early solar nebula. Prospects for future measurements are presented.
  •  
4.
  • Cordiner, M. A., et al. (författare)
  • On the Nature of the Enigmatic Object IRAS 19312+1950: A Rare Phase of Massive Star Formation?
  • 2016
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 828:1
  • Tidskriftsartikel (refereegranskat)abstract
    • IRAS 19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS 19312+1950 in the range 5–550 μm using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 μm, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: ≈0.22 solar masses of material at 280 ± 18 K, and ≈1.6 solar masses of material at 157 ± 3 K. The O i 63 μm line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km/s along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H2O at 5.8 μm and CO2 at 15 μm. The spectral energy distribution is consistent with a massive, luminous (~2 × 10^4 solar luminosities) central source surrounded by a dense, warm circumstellar disk and envelope of total mass ~500–700 solar masses, with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS 19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS 19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.
  •  
5.
  • Roth, Nathan X., et al. (författare)
  • Molecular Outgassing in Centaur 29P/Schwassmann-Wachmann 1 during Its Exceptional 2021 Outburst: Coordinated Multiwavelength Observations Using nFLASH at APEX and iSHELL at the NASA-IRTF
  • 2023
  • Ingår i: Planetary Science Journal. - 2632-3338. ; 4:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The extraordinary 2021 September-October outburst of Centaur 29P/Schwassmann-Wachmann 1 afforded an opportunity to test the composition of primitive Kuiper disk material at high sensitivity. We conducted nearly simultaneous multiwavelength spectroscopic observations of 29P/Schwassmann-Wachmann 1 using iSHELL at the NASA Infrared Telescope Facility (IRTF) and nFLASH at the Atacama Pathfinder EXperiment (APEX) on 2021 October 6, with follow-up APEX/nFLASH observations on 2021 October 7 and 2022 April 3. This coordinated campaign between near-infrared and radio wavelengths enabled us to sample molecular emission from a wealth of coma molecules and to perform measurements that cannot be accomplished at either wavelength alone. We securely detected CO emission on all dates with both facilities, including velocity-resolved spectra of the CO (J = 2-1) transition with APEX/nFLASH and multiple CO (v = 1-0) rovibrational transitions with IRTF/iSHELL. We report rotational temperatures, coma kinematics, and production rates for CO and stringent (3σ) upper limits on abundance ratios relative to CO for CH4, C2H6, CH3OH, H2CO, CS, and OCS. Our upper limits for CS/CO and OCS/CO represent their first values in the literature for this Centaur. Upper limits for CH4, C2H6, CH3OH, and H2CO are the most stringent reported to date, and are most similar to values found in ultra CO-rich Oort cloud comet C/2016 R2 (PanSTARRS), which may have implications for how ices are preserved in cometary nuclei. We demonstrate the superb synergy of coordinated radio and near-infrared measurements, and advocate for future small-body studies that jointly leverage the capabilities of each wavelength.
  •  
6.
  • Sewiło, Marta, et al. (författare)
  • Complex Organic Molecules in Star-Forming Regions of the Magellanic Clouds
  • 2019
  • Ingår i: ACS Earth and Space Chemistry. - : American Chemical Society (ACS). - 2472-3452. ; 3:10, s. 2088-2109
  • Forskningsöversikt (refereegranskat)abstract
    • The Large and Small Magellanic Clouds (LMC and SMC), gas-rich dwarf companions of the Milky Way, are the nearest laboratories for detailed studies on the formation and survival of complex organic molecules (COMs) under metal-poor conditions. To date, only methanol, methyl formate, and dimethyl ether have been detected in these galaxies-all three toward two hot cores in the N113 star-forming region in the LMC, the only extragalactic sources exhibiting complex hot-core chemistry. We describe a small and diverse sample of the LMC and SMC sources associated with COMs or hot-core chemistry, and compare the observations to theoretical model predictions. Theoretical models accounting for the physical conditions and metallicity of hot molecular cores in the Magellanic Clouds have been able to broadly account for the existing observations, but they fail to reproduce the dimethyl ether abundance by more than an order of magnitude. We discuss future prospects for research in the field of complex chemistry in the low-metallicity environment. The detection of COMs in the Magellanic Clouds has important implications for astrobiology. The metallicity of the Magellanic Clouds is similar to that of galaxies in the earlier epochs of the universe; thus, the presence of COMs in the LMC and SMC indicates that a similar prebiotic chemistry leading to the emergence of life, as it happened on Earth, is possible in low-metallicity systems in the earlier universe.
  •  
7.
  • Willacy, K., et al. (författare)
  • The Composition of the Protosolar Disk and the Formation Conditions for Comets
  • 2015
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 197:1-4, s. 151-190
  • Forskningsöversikt (refereegranskat)abstract
    • Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today.This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.
  •  
8.
  • Wirström, Eva, 1977, et al. (författare)
  • 15N fractionation in star-forming regions and Solar System objects
  • 2015
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 11:A29A, s. 271-274
  • Konferensbidrag (refereegranskat)abstract
    • We briefly review what is currently known of 14N/15N ratios in interstellar molecules. We summarize the fractionation ratios measured in HCN, HNC, CN, N2 and NH3, and compare these to theoretical predictions and to the isotopic inventory of cometary volatiles.
  •  
9.
  • Wirström, Eva, 1977, et al. (författare)
  • COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD
  • 2014
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 788:2
  • Tidskriftsartikel (refereegranskat)abstract
    • After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (similar to 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 1(10)-1(01)) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.
  •  
10.
  • Wirström, Eva, 1977, et al. (författare)
  • ISOTOPIC ANOMALIES IN PRIMITIVE SOLAR SYSTEM MATTER: SPIN-STATE-DEPENDENT FRACTIONATION OF NITROGEN AND DEUTERIUM IN INTERSTELLAR CLOUDS
  • 2012
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 757:1, s. L11-
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic material found in meteorites and interplanetary dust particles is enriched in D and 15N. This is consistentwith the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed byion–molecule chemistry in the protosolar nebula. Theoretical models of interstellar fractionation at lowtemperaturespredict large enrichments in both D and 15N and can account for the largest isotopic enrichments measured incarbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large15N enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, ifany, 15N enrichment. By considering the spin-state dependence in ion–molecule reactions involving the ortho andpara forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation forboth 15N and D in dense cloud cores.We also show that while the nitriles, HCN and HNC, contain the greatest 15Nenrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support theview that solar system 15N and D isotopic anomalies have an interstellar heritage. We also compare our results toexisting astronomical observations and briefly discuss future tests of this model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy