SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chatterjee Debashis) "

Sökning: WFRF:(Chatterjee Debashis)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chatterjee, Debashis, et al. (författare)
  • Assessment of arsenic exposure from groundwater and rice in Bengal Delta Region, West Bengal, India
  • 2010
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 44:19, s. 5803-5812
  • Tidskriftsartikel (refereegranskat)abstract
    • Arsenic (As) induced identifiable health outcomes are now spreading across Indian subcontinent with continuous discovery of high As concentrations in groundwater. This study deals with groundwater hydrochemistry vis-a-vis As exposure assessment among rural population in Chakdaha block, West Bengal, India. The water quality survey reveals that 96% of the tubewells exceed WHO guideline value (10 mu g/L of As). The groundwaters are generally anoxic (-283 to -22 mV) with circum-neutral pH (6.3 to 7.8). The hydrochemistry is dominated by HCO3- (208 to 440 mg/L), Ca2+ (79 to 178 mg/L) and Mg2+ (17 to 45 mg/L) ions along with high concentrations of As-T (As total, below detection limit to 0.29 mg/L), Fe-T (Fe total, 1.2 to 16 mg/L), and Fe(II) (0.74 to 16 mg/L). The result demonstrates that Fe(II)-Fe(III) cycling is the dominant process for the release of As from aquifer sediments to groundwater (and vice versa), which is mainly controlled by the local biogeochemical conditions. The exposure scenario reveals that the consumption of groundwater and rice are the major pathways of As accumulation in human body, which is explained by the dietary habit of the surveyed population. Finally, regular awareness campaign is essential as part of the management and prevention of health outcomes. (c) 2010 Elsevier Ltd. All rights reserved.
  •  
2.
  • Bhattacharya, Prosun, et al. (författare)
  • Groundwater arsenic in the Lower Ganges Delta Plain in West Bengal, India and Bangladesh : A hydrogeochemical comparison
  • 2010
  • Ingår i: Geological Society of America. ; , s. 653-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Arsenic contaminations in groundwater have been widely reported. The serious arsenic contamination of groundwater of Lower Ganga delta Plain (LGDP) in West Bengal, India and Bangladesh has emerged as a global natural environmental health disaster. The Bengal Delta Plain (BDP) is one of the largest deltas in the world, drained by the Ganges, Brahmaputra and Meghna river (GBM) systems. Groundwater samples were collected from 67 different sites located in the districts of 24-Parganas (S), 24-Parganas (N) and Nadia in West Bengal, India along the western margin (Bhagirathi sub-basin), and 40 different sites located in the districts of Comilla, Laxmipur, Munshiganj, Faridpur and Jhenaida districts of Bangladesh along the eastern part of the Bengal Basin (Padma-Meghna sub-basin). Groundwater in the Nadia, West Bengal is mostly of Ca–HCO3 type while in the lower part of the delta, the groundwater is of Ca-Mg-SO4 type. The concentrations of major solutes (Na+, Mg2+, Ca2+, K+, HCO3-, SO42-, NO3- and PO43- in groundwater of Meghna sub-basin is more variable than Bhagirathi sub-basin that indicating different hydrological setting in the parts of the Bengal basin. The trace element concentrations such as As, Fe and Mn also show considerable variability in the two distinct parts of the Bengal basin. Most groundwaters of the LGDP contain arsenic above the WHO and the BIS standard of 0.01 mg/L as well as in many case above the Bangladesh drinking water standard (0.05 mg/L). Both sites have moderately reducing environment, with high concentrations of dissolved organic carbon, indicating dominantly metal-reducing processes and nearly similar mechanism in As mobilization. The occurrence of elevated arsenic in groundwater is generally associated with natural biogeochemical reactions (such as reductive dissolution of iron oxides/hydroxides) by altering groundwater redox state and releasing arsenic from sediment to aqueous phase. The various redox-sensitive solutes indicate overlapping redox zones, leading to partial redox equilibrium conditions where As, once liberated from minerals of sediments, would tend to remain in groundwater because of the complex interplay among the electron acceptors. Also, microbes in organic matter environment are acting as the major electron acceptor, in the Lower Ganges Delta Plain.
  •  
3.
  • Bhattacharya, Prosun, 1962-, et al. (författare)
  • Natural Arsenic in Coastal Groundwaters in the Bengal Delta Region in West Bengal, India
  • 2010
  • Ingår i: Management and Sustainable Development of Coastal Zone Environments. - Dordrecht : Springer Netherlands. - 9789048130672 ; , s. 146-160
  • Bokkapitel (refereegranskat)abstract
    • Bengal Delta region is currently confronted with largest groundwater arsenic calamity in history of human kind (BGS-DPHE, 2001; Mukherjee and Bhattacharya, 2001; Bhattacharya et al., 2002a; McArthur et al., 2001; Smedley and Kinniburgh, 2002; Mukherjee et al., 2006; Nath et al., 2005, 2007, 2008). Concentrations of arsenic in drinking water wells in the region often exceed the WHO drinking water guideline value (10 μg L-1) and the national safe limit of both India and Bangladesh for arsenic in drinking water (Smedley and Kinniburgh, 2002; RGNDWM, 2002; CGWB, 1999; Bhattacharya et al., 2002a). About one third (35 million) population inhabiting in this region (West Bengal and Bangladesh), currently at risk of long-term arsenic exposure (Bhattacharya et al., 2001; RGNDWM, 2002; Chakraborti et al., 2004; Kapaj et al., 2006), are being diagnosed with a wide spectrum of adverse health impacts including skin disorders such as hyper/hypo-pigmentation, keratosis and melanosis and are also in hot-spot areas of BDP which is reflected in a rise in the number of cancer cases (Guha Mazumdar et al., 1988). The distribution pattern of arsenic occurrence in BDP is patchy and there are numerous hotspots of arsenic contamination in the semi-confined shallow Holocene aquifer (Bhattacharya et al., 1997; Smedley and Kinniburgh, 2002). The scale of the problem is serious both in terms of hotspots and geographic area coverage (173 × 10 3 km2, eastern part of Hoogly-Bhagirathi/Western part of Ganga-Padma-lower Meghna flood plains).
  •  
4.
  • Bhattacharya, Prosun, 1962-, et al. (författare)
  • Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, eastern India: Options for safe drinking water supply
  • 1997
  • Ingår i: International Journal of Water Resources Development. - London, UK : Routledge. - 0790-0627 .- 1360-0648. ; 13:1, s. 79-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Arsenic contamination in groundwater used for drinking purposes has been envisaged as a problem of global concern. Exploitation of groundwater contaminated with arsenic within the delta plains in West Bengal has caused adverse health effects among the population within a span of 8-10 years. The sources of arsenic in natural water are a function of the local geology, hydrology and geochemical characteristics of the aquifers. The retention and mobility of different arsenic species are sensitive to varying redox conditions. The delta plains in West Bengal are characterized by a series of meander belts formed by the fluvial processes comprising different cycles of complete or truncated fining upward sequences (sand-silt-clay). The arseniferous groundwater belts are mainly located in the upper delta plain and in abandoned meander channels. Mineralogical investigations have established that arsenic in the silty day as well as in the sandy layers occurs as coatings on mineral grains. Clayey sediments intercalated with sandy aquifers at depths between 20 and 80 m are reported as a major source of arsenic in groundwater. Integrated knowledge on geological, hydrological and geochemical characteristics of the multi-level aquifer system of the upper delta plain is therefore necessary in predicting the origin, occurrence and mobility of arsenic in groundwater in West Bengal. This would also provide a basis for developing suitable low-cost techniques for safe drinking water supply in the region.
  •  
5.
  • Bhowmick, Subhamoy, et al. (författare)
  • Is Saliva a Potential Biomarker of Arsenic Exposure? : A Case-Control Study in West Bengal, India
  • 2013
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 47:7, s. 3326-3332
  • Tidskriftsartikel (refereegranskat)abstract
    • Saliva is a biological fluid that has not been used extensively as a biomonitoring tool in epidemiological studies. This study presents the arsenic (As) concentrations in saliva and urine samples collected from populations of West Bengal, India who had been previously exposed to high As levels in their drinking water. We found a significant (p < 0.05) association between the Log transformed Daily Ingestion of As (mu g day(-1)) and the As concentration in saliva (r = 0.68). Additionally, As concentration of saliva and urine also had a significant positive correlation (r = 0.60, p < 0.05). Male participants, smokers, and cases of skin lesion were independently and significantly associated with an increase in salivary As. Thus our findings show that saliva is a useful biomarker of As exposure in the study population. The study also advocates that measurement of the forms of As in saliva may additionally provide insight into the internal dose and any individual differences in susceptibility to As exposure.
  •  
6.
  • Bhowmick, Subhamoy, et al. (författare)
  • Speciation of Arsenic in Saliva Samples from a Population of West Bengal, India
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:12, s. 6973-6980
  • Tidskriftsartikel (refereegranskat)abstract
    • Saliva, an easily accessible biofluid, is validated as biomarker of arsenic (As) exposure in several villages of West Bengal, India. Pentavalent arsenic [As(V)] was found to be the predominant species in saliva, with the amount of inorganic As [As(V) and trivalent form, As(III)] being more than half of the total As in the samples. Significant association was found between total daily ingestion of As and As(V) (r = 0.59; p = 0.000), As(III) (r = 0.60; p = 0.000), dimethylarsinous acid (DMA(V)) (r = 0.40; p = 0.000), and monomethylarsonous acid (MMA(V)) (r = 0.44; p = 0.000), implying that these species have mainly been derived from the methylation of the inorganic As in the water that study participants drank and the food they ate. Analysis of confounding effects of age, sex, smoking, body mass index and the prevalence of skin lesion suggests that women and controls with no skin lesion had a higher capacity to methylate the ingested As compared to the rest of the population. Thus, our study demonstrates that As species in saliva can be an useful tool to predict the individual susceptibility where higher As exposure and a lower methylation capacity are implicated in the development of As-induced health effects.
  •  
7.
  •  
8.
  • Biswas, Ashis, et al. (författare)
  • Estimating the role of competing ions on the arsenic mobilization processes in the aquifers of Bengal Basin by surface complexation modeling
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • This study investigates the relative roles of the different competing ions on the arsenic (As) mobilization in the sedimentary aquifers of Bengal basin by surface complexation modeling of the temporal varaibility of As in shallow (<50 m) groundwater. Two sets of piezometers (2×5 = 10), installed at the two sites with relatively contrasting dissolved As concentration in groundwater, were monitored bi-weekly for As and other hydrogeochemical parameters over a period of 20 months. The estimation of the standard deviation (SD) for As(III) reflects strong temporal variation (SD ≥10 μg/L) in all the piezometers of two sites over the monitoring period. Particularly, the variation is more prominent in the shallowest part of the aquifer, where the site specific cyclic trends are evident. While, As(V) shows significant temporal variation in the piezometers of high As site only and no specific trend is reflected in the variation.Two different surface complexation models (SCMs), developed for ferrihydrite and goethite have been explored to account for the observed temporal variation in As(III) and As(V) concentrations. The SCM for ferrihydrite has provided the better estimation for both As(III) and As(V) variations.Among the different competing ions, PO43- appears as the major competitor of As(III) and As(V) adsorption onto ferrihydrite and the competition ability decreases in the order PO43- >> Fe(II) > H4SiO4 = HCO3-. It is further revealed that a small decrease in pH significantly increases the concentration of As(III) and decreases the As(V) concentration and vice versa. The present study suggests that the reductive dissolution of Fe oxyhydroxides alone cannot explain the observed high As concentration in groundwater of the sedimentary aquifers. Perhaps, the reductive dissolution of Fe oxyhydroxides followed by competitive sorption reactions with the aquifer sediment is the processes conducive for As enrichment in the groundwater of Bengal basin.
  •  
9.
  • Biswas, Ashis, et al. (författare)
  • Groundwater chemistry and redox processes : Depth dependent arsenic release mechanism
  • 2011
  • Ingår i: APPLIED GEOCHEMISTRY. - : Elsevier BV. ; , s. 516-525
  • Konferensbidrag (refereegranskat)abstract
    • Patchy occurrences of elevated As are often encountered in groundwater from the shallow aquifers (<50 m) of the Bengal Delta Plain (BDP). A clear understanding of various biogeochemical processes, responsible for As mobilization, is very important to explain this patchy occurrence and thus to mitigate the problem. The present study deals with the periodical monitoring of groundwater quality of five nested piezometeric wells between December 2008 and July 2009 to investigate the temporal changes in groundwater chemistry vis-a-vis the prevalent redox processes in the aquifer. Geochemical modeling has been carried out to identify key phases present in groundwater. A correlation study among different aqueous redox parameters has also been performed to evaluate prevailing redox processes in the aquifer. The long term monitoring of hydrochemical parameters in the multilevel wells together with hydrogeochemical equilibrium modeling has shown more subtle differences in the geochemical environment of the aquifer, which control the occurrence of high dissolved As in BDP groundwater. The groundwater is generally of Ca-HCO3 type. The dissolved As concentration in groundwater exceeded both WHO and National drinking water standard (Bureau of Indian Standards; BIS, 10 mu g L-1) throughout the sampling period. The speciation of As and Fe indicate persistent reducing conditions within the aquifer [As(III): 87-97% of As-T and Fe(II): 76-96% of Fe-T]. The concentration of major aqueous solutes is relatively high in the shallow aquifer (wells A and B) and gradually decreases with increasing depth in most cases. The calculation of SI indicates that groundwater in the shallow aquifer is also relatively more saturated with carbonate minerals. This suggests that carbonate mineral dissolution is possibly influencing the groundwater chemistry and thereby controlling the mobilization of As in the monitored shallow aquifer. Hydrogeochemical investigation further suggests that Fe and/or Mn oxyhydroxide reduction is the principal process of As release in groundwater from deeper screened piezometric wells. The positive correlations of U and V with As. Fe and Mn indicate redox processes responsible for mobilization of As in the deeper screened piezometric wells are possibly microbially mediated. Thus, the study advocates that mobilization of As is depth dependent and concentrations of As in groundwater depends on single/combined release mechanisms.
  •  
10.
  • Biswas, Ashis, et al. (författare)
  • Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin : consequences for sustainable drinking water supply
  • 2012
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 431, s. 402-412
  • Tidskriftsartikel (refereegranskat)abstract
    • Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (<70 m) over an area of 100 km(2) in Chakdaha Block of Nadia district, West Bengal, India. The results indicate that despite close similarity in major ion composition, the redox condition is markedly different in groundwater of the two studied aquifers. The redox condition in the BSA is delineated to be Mn oxy-hydroxide reducing, not sufficiently lowered for As mobilization into groundwater. In contrast, the enrichments of NH4+, PO43-, Fe and As along with lower Eh in groundwater of GSA reflect reductive dis-solution of Fe oxy-hydroxide coupled to microbially mediated oxidation of organic matter as the prevailing redox process causing As mobilization into groundwater of this aquifer type. In some portions of GSA the redox status even has reached to the stage of SO42- reduction, which to some extent might sequester dissolved As from groundwater by co-precipitation with authigenic pyrite. Despite having low concentration of As in groundwater of the BSA the concentration of Mn often exceeds the drinking water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
tidskriftsartikel (14)
konferensbidrag (5)
annan publikation (4)
bokkapitel (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Chatterjee, Debashis (23)
Biswas, Ashis (17)
Halder, Dipti (16)
Jacks, Gunnar (12)
Bhattacharya, Prosun (11)
Bhattacharya, Prosun ... (9)
visa fler...
Mukherjee, Abhijit (7)
Nath, Bibhash (7)
Kundu, Amit K. (7)
Neidhardt, Harald (6)
Berner, Zsolt (6)
Bhowmick, Subhamoy (5)
Nriagu, Jerome (5)
Saha, Debasree (3)
Gustafsson, Jon Pett ... (2)
Gustafsson, Jon-Pett ... (2)
Alexanderson, Helena (2)
Bundschuh, Jochen (2)
Sracek, Ondra (2)
Ahmed, Kazi Matin (2)
Maity, Jyoti Prakash (2)
Chen, Chien-Yen (2)
Kundu, Amit Kumar (2)
Iglesias, Monica (2)
Mazumder, Debendra N ... (2)
Roman-Ross, Gabriela (2)
Majumder, Santanu (2)
Mukherjee-Goswami, A ... (2)
Mandal, Ujjal (2)
Morth, Carl-Magnus (1)
Jacks, Gunnar, 1937- (1)
Jean, Jiin-Shuh (1)
Thunvik, Roger (1)
Mukherjee, Arun B. (1)
Hasan, Md Aziz (1)
Nath, Bibhas (1)
Majumder, Santanu A. (1)
Bhowmick, Subhamoy K ... (1)
Ramanathan, AL L. (1)
Bhowmick, S. (1)
Guha Mazumder, D. N. (1)
Kundu, Amit (1)
Kundu, A. K. (1)
Neidhardt, H. (1)
Berner, Z. (1)
Kundu, Arnit K. (1)
Mandal, Ujja (1)
Roy, Partha Pratim (1)
Haider, Dipti (1)
Hazra, Rasmani (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (23)
Luleå tekniska universitet (1)
Stockholms universitet (1)
Lunds universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (15)
Teknik (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy