SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chaudhary Sujeet) "

Sökning: WFRF:(Chaudhary Sujeet)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akansel, Serkan, 1983-, et al. (författare)
  • Thickness dependent enhancement of damping in Co2FeAl/β-Ta thin films
  • 2018
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 97:13
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present work Co2FeAl (CFA) thin films were deposited by ion beam sputtering on Si (100) substrates at the optimized deposition temperature of 300°C. A series of CFA films with different thickness (tCFA ); 8, 10, 12, 14, 16, 18 and 20 nm were prepared and all samples were capped with a 5 nm thick b-Ta layer. The thickness dependent static and dynamic properties of the films were studied by SQUID magnetometry, in-plane as well as out-of-plane broadband VNA-FMR measurements and angle dependent cavity FMR measurements. The saturation magnetization and the coercive field were found to be weakly thickness dependent and lie in the range 900 – 950 kA/m and 0.53 – 0.87 kA/m, respectively. The effective damping parameter ( αeff) extracted from in-plane and out-of-plane FMR results reveal a 1/tCFA dependence, the values for the in-plane αeff being larger due to two-magnon scattering (TMS). The origin of the αeff thickness dependence is spin pumping into the non-magnetic b-Ta layer and in case of the in-plane  αeff also a thickness dependent TMS contribution. From the out-of-plane FMR results, it was possible to disentangle the different contributions to αeff   and to the extract values for the intrinsic Gilbert damping (αG ) and the effective spin-mixing conductance (g_eff^↑↓ ) of the CFA/ b-Ta interface, yielding αG=1.1X10-3 and g_eff^↑↓=2.90x1019 m-2.
  •  
2.
  • Barwal, Vineet, et al. (författare)
  • Anisotropic Gilbert Damping in B2 ordered Full Heusler Alloy Co2MnAl thin films
  • 2020
  • Ingår i: DAE Solid State Physics Symposium 2019. - : AIP Publishing. - 9780735420250
  • Konferensbidrag (refereegranskat)abstract
    • Structural and dynamic magnetization properties of Co2MnAl (CMA) full Heusler alloy thin films grown on Si (100) substrate at different substrate temperatures (Ts) 30°C, 200°C, 300°C, 400°C and 500°C are investigated. XRD patterns revealed the formation of B2 partially ordered phase at Ts=200°C and above. Ferromagnetic Resonance (FMR) technique have been used to determine the damping constant (α), resonance field (Hr) and line width (ΔH) of recorded spectra and fitted by using Landau-Lifshitz-Gilbert (LLG) equation. The lowest damping constant was found to be 0.007±0.002 for the film grown at Ts=200°C. Films exhibit uniaxial magnetic anisotropy. Anisotropic damping constant α is calculated along the easy and hard axis. Along the two directions remarkable change (almost ∼59%) in α is observed.
  •  
3.
  • Barwal, Vineet, et al. (författare)
  • Growth and Dynamic Magnetization Study of Co2MnAl Full Heusler Alloy Thin Films
  • 2018
  • Ingår i: 2nd International Conference on Condensed Matter and Applied Physics (ICC-2017). - : American Institute of Physics (AIP). - 9780735416482
  • Konferensbidrag (refereegranskat)abstract
    • Structural and dynamic magnetization properties of Co2MnAl (CMA) full Heusler alloy thin films grown on Si (100) substrates at different substrate temperatures (T-s) room temperature (RT), 200 degrees C, 300 degrees C, 400 degrees C and 500 degrees C are investigated. X-ray diffraction patterns revealed the formation of B2 ordered phase. Ferromagnetic Resonance (FMR) technique have been used to investigate the dynamic magnetization response. From the observed frequency dependence of the resonance field (H-r) and line width (Delta H), the effective saturation magnetization (4 pi M-eff) and damping constant () have been evaluated. The lowest damping constant was found to be 0.007 +/- 0.002 for the film grown at T-s=200 degrees C which is comparable to the reported value.
  •  
4.
  • Barwal, Vineet, et al. (författare)
  • Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films
  • 2018
  • Ingår i: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 123:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Angular dependent magnetization reversal has been investigated in Co2MnAl (CMA) full Heusler alloy thin films grown on Si(100) at different growth temperatures (T-s) by DC-magnetron sputtering. An M-shaped curve is observed in the in-plane angular (0 degrees-360 degrees) dependent coercivity (ADC) by magneto-optical Kerr effect measurements. The dependence of the magnetization reversal on Ts is investigated in detail to bring out the structure-property correlation with regards to ADC in these polycrystalline CMA thin films. This magnetization reversal (M-shaped ADC behavior) is well described by the two-phase model, which is a combination of Kondorsky (domain wall motion) and Stoner Wohlfarth (coherent rotation) models. In this model, magnetization reversal starts with depinning of domain walls, with their gradual displacement explained by the Kondorsky model, and at a higher field (when the domain walls merge), the system follows coherent rotation before reaching its saturation following the Stoner Wohlfarth model. Further, the analysis of angular dependent squareness ratio (M-r/M-s) indicates that our films clearly exhibited twofold uniaxial anisotropy, which is related to self-steering effect arising due to the obliquely incident flux during the film-growth.
  •  
5.
  • Barwal, Vineet, et al. (författare)
  • Spin gapless semiconducting behavior in inverse Heusler Mn2-xCo1 +/- xAl (0 x 1.75) thin films
  • 2021
  • Ingår i: Journal of Magnetism and Magnetic Materials. - : Elsevier. - 0304-8853 .- 1873-4766. ; 518
  • Tidskriftsartikel (refereegranskat)abstract
    • We correlate the structural, electrical, and magnetotransport properties of co-sputtered Mn2-xCo1?xAl full Heusler alloy thin films (0 x 1.75) in terms of Co/Mn concentration variation concerning the spin gapless semiconducting (SGS) behavior. The alloy thin films are found to stabilize in B2 order for near stoichiometric films, i.e. (x = 0 and x = 1), with the gradual change in the ordering and lattice parameter through Mn concentration variation. Magnetization measurements in Mn2-xCo1?xAl thin films reveal the ferromagnetic and ferrimagnetic character for x = 1.75, 1.5, 1.25 & 1, and x = 0, 0.5 & 0.75, respectively. The longitudinal resistivity measurement revealed that the films exhibit semiconducting behavior with a change in sign of the temperature coefficient of resistance with temperature. The anomalous Hall conductivity values for the Mn2-xCo1?xAl thin films are extracted from the Anomalous Hall effect (AHE) measurements. The non-saturating positive MR (linear in H) is being reported for the first time in the Mn2CoAl thin films. The value of the AHE coefficient and positive MR together serve as a piece of experimental evidence for the SGS character in the thin film. The SGS behavior becomes predominant at higher Mn concentration. Highly resistive thin films with ferromagnetic (ferrimagnetic) character in Co2MnAl (Mn2CoAl) could be beneficial for semiconductor spintronics, where we need a good resistive element to match up with Silicon base substrate.
  •  
6.
  • Barwal, Vineet, et al. (författare)
  • Structural and magneto-transport properties of co-sputtered MnAl thin films
  • 2020
  • Ingår i: Journal of Magnetism and Magnetic Materials. - : ELSEVIER. - 0304-8853 .- 1873-4766. ; 503
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the structural and magneto-transport properties of co-sputtered MnAl alloy thin films grown on Si (1 0 0) at various substrate temperatures (T-s) ranging from room temperature to 500 degrees C. Analyses of the X-ray diffraction and DC-Magnetization data reveal that as the T-s of the films is changed, the volume fraction of ferromagnetic tau-MnxAl100-x (50 < x < 60) metastable phase retained in the films changes from 3.7 to 9.5% and the remaining fraction comprises of non-magnetic beta-MnAl and gamma(2)-phases. The temperature-dependent longitudinal resistivity variation demonstrates a semi-metallic nature in all these films. The temperature dependence of Hall Effect data further corroborates this semi-metallic behavior. The magnetoresistance (MR) response of these films is measured in the range of 10-300 K, both in the in-plane as well as out-of-plane magnetic field configurations. The out-of-plane MR is significantly larger than in-plane MR due to electron-hole compensation (which stems from mull-band effects) which is discussed further by plotting the Kohler's plot for the thin films.
  •  
7.
  • Behera, Nilamani, et al. (författare)
  • Anisotropic magnetic damping studies in β-Ta/2D-epitaxial-Py bilayers
  • 2017
  • Ingår i: Journal of Magnetism and Magnetic Materials. - : Elsevier BV. - 0304-8853 .- 1873-4766. ; 444, s. 256-262
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the anisotropy of the effective damping (αeff) in the sputtered β-Ta(6 nm)/2D-epitaxial-Py(tPy = 3–10 nm) bilayers. In-plane field orientation dependent FMR measurements revealed a prominent anisotropy in αeff, which is ascribed to the spin wave induced spin pumping from Py to β-Ta in β-Ta/epi-Py system. The results especially suggest that at lower tPy a relatively larger αeff and its anisotropic nature are present in β-Ta/epi-Py bilayers as compared to bare epi-Py, which are unlikely at higher tPy. This is possibly due to both spin pumping which stems from in-plane spin waves associated with two magnon scattering mechanism and interface induced anisotropy from heavy metals like β-Ta at β-Ta/Py interface. The in-plane Hr vs. φ reveals clear anisotropy behavior at tPy ≤ 4 nm.
  •  
8.
  • Behera, Nilamani, et al. (författare)
  • Two magnon scattering and anti-damping behavior in a two-dimensional epitaxial TiN/Py(t(Py))/beta-Ta(t(Ta)) system
  • 2017
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 7:14, s. 8106-8117
  • Tidskriftsartikel (refereegranskat)abstract
    • The prime requirements for the spin transfer torque based ferromagnetic (FM)/nonmagnetic (NM) bilayer spin devices are (i) the absence of two-magnon scattering (TMS) noise, (ii) minimum energy dissipation and (iii) fast switching. To realize these objectives we have studied the thickness, Py (permalloy) thicknesses (t(Py)) and beta-Ta thicknesses (t(Ta)), dependent magnetization dynamics behaviour of the epitaxial Py (t(Py) = 3-20 nm)/beta-Ta (t(Ta) = 1.5-15 nm) system. The t(Py) dependence of TMS in epitaxial Py nanolayers (t(Py) = 3-20 nm) grown on a Si(400)/TiN(200) (8 nm) substrate is explored in terms of uniform and non-uniform magnetization precession regimes by employing ferromagnetic resonance field (H-r), linewidth (Delta H), and Gilbert damping constant (alpha) behaviour. It is found that in Py, t(Py) < 10 nm, layers TMS is dominating due to non-uniform precession of the magnetization. However in Py, t(Py) >= 10 nm, layers the uniform magnetization precession dominates, therefore Py layers, t(Py) >= 10 nm, are almost free from TMS. Furthermore, a nearly TMS free 12 nm epitaxial Py(200) layer is capped with beta-Ta (t(Ta) = 1.5-15 nm) layers to explore the t(Ta) dependent magnetization precession of epitaxial Py (12 nm) in terms of change in effective Gilbert damping constant (alpha(eff)). An anomalous decrease in alpha(eff) from 0.0087 at t(Ta) = 0 to a minimum value of 0.0077 at t(Ta) = 6 nm, and its subsequent increase for t(Ta) > 6 nm are observed in the epitaxial Py (12 nm)/beta-Ta(t(Ta)) system. Therefore the Si(400)/TiN(200) (8 nm)/Py(200) (12 nm)/beta-Ta(200) (6 nm) epitaxial system with nearly uniform magnetic precession and minimum effective Gilbert damping is suitable for low energy loss and ultrafast switching applications in spin transfer torque devices.
  •  
9.
  • Chaurasiya, Avinash Kumar, et al. (författare)
  • Direct observation of unusual interfacial Dzyaloshinskii-Moriya interaction in graphene/NiFe/Ta heterostructures
  • 2019
  • Ingår i: Physical Review B. - 2469-9950 .- 2469-9969. ; 99:3, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene/ferromagnet interface promises a plethora of new science and technology. The interfacial Dzyaloshinskii-Moriya interaction (iDMI) is essential for stabilizing chiral spin textures, which are important for future spintronic devices. Here, we report direct observation of iDMI in graphene/Ni80Fe20/Ta heterostructures from nonreciprocity in spin-wave dispersion using Brillouin light-scattering technique. Linear scaling of iDMI with the inverse of Ni80Fe20 thicknesses suggests primarily interfacial origin of iDMI. Both iDMI and spinmixing conductance increase with the increase in defect density of graphene obtained by varying argon pressure during sputter deposition of Ni80Fe20. This suggests that the observed iDMI originates from defect-induced extrinsic spin-orbit coupling at the interface. The direct observation of iDMI at graphene/ferromagnet interface without perpendicular magnetic anisotropy opens a route in designing thin-film heterostructures based on two-dimensional materials for controlling chiral spin structure such as skyrmions and bubbles, and magnetic domain-wall-based storage and memory devices.
  •  
10.
  • Dutta, Soma, et al. (författare)
  • Manipulating ultrafast magnetization dynamics of ferromagnets using the odd-even layer dependence of two-dimensional transition metal di-chalcogenides
  • 2024
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 16:8, s. 4105-4113
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional transition metal dichalcogenides (TMDs) have drawn immense interest due to their strong spin-orbit coupling and unique layer number dependence in response to spin-valley coupling. This leads to the possibility of controlling the spin degree of freedom of the ferromagnet (FM) in thin film heterostructures and may prove to be of interest for next-generation spin-based devices. Here, we experimentally demonstrate the odd-even layer dependence of WS2 nanolayers by measurements of the ultrafast magnetization dynamics in WS2/Co3FeB thin film heterostructures by using time-resolved Kerr magnetometry. The fluence (photon energy per unit area) dependent magnetic damping (alpha) reveals the existence of broken symmetry and the dominance of inter- and intraband scattering for odd and even layers of WS2, respectively. The higher demagnetization time, tau m, in 3 and 5 layers of WS2 is indicative of the interaction between spin-orbit and spin-valley coupling due to the broken symmetry. The lower tau m in even layers as compared to the bare FM layer suggests the presence of a spin transport. By correlating tau m and alpha, we pinpointed the dominant mechanisms of ultrafast demagnetization. The mechanism changes from spin transport to spin-flip scattering for even layers of WS2 with increasing fluence. A fundamental understanding of the two-dimensional material and its odd-even layer dependence at ultrashort timescales provides valuable information for designing next-generation spin-based devices. Odd-even WS2 layer number dependent ultrafast demagnetization and damping are studied by varying the pump fluence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy