SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chaufray Y. Y) "

Sökning: WFRF:(Chaufray Y. Y)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jakosky, B. M., et al. (författare)
  • MAVEN observations of the response of Mars to an interplanetary coronal mass ejection
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 350:6261
  • Tidskriftsartikel (refereegranskat)abstract
    • Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.
  •  
2.
  • Chaufray, J. Y., et al. (författare)
  • Mars solar wind interaction : Formation of the Martian corona and atmospheric loss to space
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:E9, s. E09009-
  • Forskningsöversikt (refereegranskat)abstract
    • A three- dimensional ( 3- D) atomic oxygen corona of Mars is computed for periods of low and high solar activities. The thermal atomic oxygen corona is derived from a collisionless Chamberlain approach, whereas the nonthermal atomic oxygen corona is derived from Monte Carlo simulations. The two main sources of hot exospheric oxygen atoms at Mars are the dissociative recombination of O-2(+) between 120 and 300 km and the sputtering of the Martian atmosphere by incident O+ pickup ions. The reimpacting and escaping fluxes of pickup ions are derived from a 3- D hybrid model describing the interaction of the solar wind with our computed Martian oxygen exosphere. In this work it is shown that the role of the sputtering crucially depends on an accurate description of the Martian corona as well as of its interaction with the solar wind. The sputtering contribution to the total oxygen escape is smaller by one order of magnitude than the contribution due to the dissociative recombination. The neutral escape is dominant at both solar activities ( 1 x 10(25) s(-1) for low solar activity and 4 x 10(25) s(-1) for high solar activity), and the ion escape flux is estimated to be equal to 2 x 10(23) s(-1) at low solar activity and to 3.4 x 10(24) s(-1) at high solar activity. This work illustrates one more time the strong dependency of these loss rates on solar conditions. It underlines the difficulty of extrapolating the present measured loss rates to the past solar conditions without a better theoretical and observational knowledge of this dependency.
  •  
3.
  • Jakosky, B. M., et al. (författare)
  • The Mars Atmosphere and Volatile Evolution (MAVEN) Mission
  • 2015
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 195:1-4, s. 3-48
  • Forskningsöversikt (refereegranskat)abstract
    • The MAVEN spacecraft launched in November 2013, arrived at Mars in September 2014, and completed commissioning and began its one-Earth-year primary science mission in November 2014. The orbiter's science objectives are to explore the interactions of the Sun and the solar wind with the Mars magnetosphere and upper atmosphere, to determine the structure of the upper atmosphere and ionosphere and the processes controlling it, to determine the escape rates from the upper atmosphere to space at the present epoch, and to measure properties that allow us to extrapolate these escape rates into the past to determine the total loss of atmospheric gas to space through time. These results will allow us to determine the importance of loss to space in changing the Mars climate and atmosphere through time, thereby providing important boundary conditions on the history of the habitability of Mars. The MAVEN spacecraft contains eight science instruments (with nine sensors) that measure the energy and particle input from the Sun into the Mars upper atmosphere, the response of the upper atmosphere to that input, and the resulting escape of gas to space. In addition, it contains an Electra relay that will allow it to relay commands and data between spacecraft on the surface and Earth.
  •  
4.
  • Leblanc, F., et al. (författare)
  • Ganymede's atmosphere as constrained by HST/STIS observations
  • 2023
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 399
  • Tidskriftsartikel (refereegranskat)abstract
    • A new analysis of aurora observations of Ganymede's atmosphere on the orbital leading and trailing hemispheres has been recently published by Roth et al. (2021), suggesting that water is its main constituent near noon. Here, we present two additional aurora observations of Ganymede's sub-Jovian and anti-Jovian hemispheres, which suggest a modulation of the atmospheric H2O/O-2 ratio on the moon's orbital period, and analyze the orbital evolution of the atmosphere. For this, we propose a reconstruction of aurora observations based on a physical modelling of the exosphere taking into account its orbital variability (the Exospheric Global Model; Leblanc et al., 2017). The solution described in this paper agrees with Roth et al. (2021) that Ganymede's exosphere should be dominantly composed of water molecules. From Ganymede's position when its leading hemisphere is illuminated to when it is its trailing hemisphere, the column density of O-2 may vary between 4.3 x 10(14) and 3.6 x 10(14) cm(-2) whereas the H2O column density should vary between 5.6 x 10(14) and 1.3 x 10(15) cm(-2). The water content of Ganymede's atmosphere is essentially constrained by its sublimation rate whereas the O-2 component of Ganymede's atmosphere is controlled by the radiolytic yield. The other species, products of the water molecules, vary in a more complex way depending on their sources, either as ejecta from the surface and/or as product of the dissociation of the other atmospheric constituents. Electron impact on H2O and H-2 molecules is shown to likely produce H Lyman-alpha emissions close to Ganymede, in addition to the observed extended Lyman-alpha corona from H resonant scattering. All these conclusions being highly dependent on our capability to accurately model the origins of the observed Ganymede auroral emissions, modelling these emissions remains poorly constrained without an accurate knowledge of the Jovian magnetospheric and Ganymede ionospheric electron populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy