SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chelebian Eduard) "

Sökning: WFRF:(Chelebian Eduard)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chelebian, Eduard, et al. (författare)
  • DEPICTER : Deep representation clustering for histology annotation
  • 2024
  • Ingår i: Computers in Biology and Medicine. - : Elsevier. - 0010-4825 .- 1879-0534. ; 170
  • Tidskriftsartikel (refereegranskat)abstract
    • Automatic segmentation of histopathology whole -slide images (WSI) usually involves supervised training of deep learning models with pixel -level labels to classify each pixel of the WSI into tissue regions such as benign or cancerous. However, fully supervised segmentation requires large-scale data manually annotated by experts, which can be expensive and time-consuming to obtain. Non -fully supervised methods, ranging from semi -supervised to unsupervised, have been proposed to address this issue and have been successful in WSI segmentation tasks. But these methods have mainly been focused on technical advancements in algorithmic performance rather than on the development of practical tools that could be used by pathologists or researchers in real -world scenarios. In contrast, we present DEPICTER (Deep rEPresentatIon ClusTERing), an interactive segmentation tool for histopathology annotation that produces a patch -wise dense segmentation map at WSI level. The interactive nature of DEPICTER leverages self- and semi -supervised learning approaches to allow the user to participate in the segmentation producing reliable results while reducing the workload. DEPICTER consists of three steps: first, a pretrained model is used to compute embeddings from image patches. Next, the user selects a number of benign and cancerous patches from the multi -resolution image. Finally, guided by the deep representations, label propagation is achieved using our novel seeded iterative clustering method or by directly interacting with the embedding space via feature space gating. We report both real-time interaction results with three pathologists and evaluate the performance on three public cancer classification dataset benchmarks through simulations. The code and demos of DEPICTER are publicly available at https://github.com/eduardchelebian/depicter.
  •  
2.
  • Chelebian, Eduard, et al. (författare)
  • Higher vascularity at infiltrated peripheral edema differentiates proneural glioblastoma subtype
  • 2020
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 15:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose Genetic classifications are crucial for understanding the heterogeneity of glioblastoma. Recently, perfusion MRI techniques have demonstrated associations molecular alterations. In this work, we investigated whether perfusion markers within infiltrated peripheral edema were associated with proneural, mesenchymal, classical and neural subtypes. Materials and methods ONCOhabitats open web services were used to obtain the cerebral blood volume at the infiltrated peripheral edema for MRI studies of 50 glioblastoma patients from The Cancer Imaging Archive: TCGA-GBM. ANOVA and Kruskal-Wallis tests were carried out in order to assess the association between vascular features and the Verhaak subtypes. For assessing specific differences, Mann-Whitney U-test was conducted. Finally, the association of overall survival with molecular and vascular features was assessed using univariate and multivariate Cox models. Results ANOVA and Kruskal-Wallis tests for the maximum cerebral blood volume at the infiltrated peripheral edema between the four subclasses yielded false discovery rate corrected p-values of <0.001 and 0.02, respectively. This vascular feature was significantly higher (p = 0.0043) in proneural patients compared to the rest of the subtypes while conducting Mann-Whitney U-test. The multivariate Cox model pointed to redundant information provided by vascular features at the peripheral edema and proneural subtype when analyzing overall survival. Conclusions Higher relative cerebral blood volume at infiltrated peripheral edema is associated with proneural glioblastoma subtype suggesting underlying vascular behavior related to molecular composition in that area.
  •  
3.
  • Chelebian, Eduard, et al. (författare)
  • Morphological Features Extracted by AI Associated with Spatial Transcriptomics in Prostate Cancer
  • 2021
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 13:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary Prostate cancer has very varied appearances when examined under the microscope, and it is difficult to distinguish clinically significant cancer from indolent disease. In this study, we use computer analyses inspired by neurons, so-called 'neural networks', to gain new insights into the connection between how tissue looks and underlying genes which program the function of prostate cells. Neural networks are 'trained' to carry out specific tasks, and training requires large numbers of training examples. Here, we show that a network pre-trained on different data can still identify biologically meaningful regions, without the need for additional training. The neural network interpretations matched independent manual assessment by human pathologists, and even resulted in more refined interpretation when considering the relationship with the underlying genes. This is a new way to automatically detect prostate cancer and its genetic characteristics without the need for human supervision, which means it could possibly help in making better treatment decisions. Prostate cancer is a common cancer type in men, yet some of its traits are still under-explored. One reason for this is high molecular and morphological heterogeneity. The purpose of this study was to develop a method to gain new insights into the connection between morphological changes and underlying molecular patterns. We used artificial intelligence (AI) to analyze the morphology of seven hematoxylin and eosin (H & E)-stained prostatectomy slides from a patient with multi-focal prostate cancer. We also paired the slides with spatially resolved expression for thousands of genes obtained by a novel spatial transcriptomics (ST) technique. As both spaces are highly dimensional, we focused on dimensionality reduction before seeking associations between them. Consequently, we extracted morphological features from H & E images using an ensemble of pre-trained convolutional neural networks and proposed a workflow for dimensionality reduction. To summarize the ST data into genetic profiles, we used a previously proposed factor analysis. We found that the regions were automatically defined, outlined by unsupervised clustering, associated with independent manual annotations, in some cases, finding further relevant subdivisions. The morphological patterns were also correlated with molecular profiles and could predict the spatial variation of individual genes. This novel approach enables flexible unsupervised studies relating morphological and genetic heterogeneity using AI to be carried out.
  •  
4.
  • Pielawski, Nicolas, et al. (författare)
  • TissUUmaps 3 : Improvements in interactive visualization, exploration, and quality assessment of large-scale spatial omics data
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background and Objectives: Spatially resolved techniques for exploring the molecular landscape of tissue samples, such as spatial transcriptomics, often result in millions of data points and images too large to view on a regular desktop computer, limiting the possibilities in visual interactive data exploration. TissUUmaps is a free, open-source browser-based tool for GPU-accelerated visualization and interactive exploration of 107+ data points overlaying tissue samples.Methods: Herein we describe how TissUUmaps 3 provides instant multiresolution image viewing and can be customized, shared, and also integrated into Jupyter Notebooks. We introduce new modules where users can visualize markers and regions, explore spatial statistics, perform quantitative analyses of tissue morphology, and assess the quality of decoding in situ transcriptomics data.Results: We show that thanks to targeted optimizations the time and cost associated with interactive data exploration were reduced, enabling TissUUmaps 3 to handle the scale of today’s spatial transcriptomics methods.Conclusion: TissUUmaps 3 provides significantly improved performance for large multiplex datasets as compared to previous versions. We envision TissUUmaps to contribute to broader dissemination and flexible sharing of large-scale spatial omics data.
  •  
5.
  • Pielawski, Nicolas, et al. (författare)
  • TissUUmaps 3 : Improvements in interactive visualization, exploration, and quality assessment of large-scale spatial omics data
  • 2023
  • Ingår i: Heliyon. - : Elsevier BV. - 2405-8440. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objectives: Spatially resolved techniques for exploring the molecular landscape of tissue samples, such as spatial transcriptomics, often result in millions of data points and images too large to view on a regular desktop computer, limiting the possibilities in visual interactive data exploration. TissUUmaps is a free, open-source browser-based tool for GPU-accelerated visualization and interactive exploration of 107+ data points overlaying tissue samples.Methods: Herein we describe how TissUUmaps 3 provides instant multiresolution image viewing and can be customized, shared, and also integrated into Jupyter Notebooks. We introduce new modules where users can visualize markers and regions, explore spatial statistics, perform quantitative analyses of tissue morphology, and assess the quality of decoding in situ transcriptomics data.Results: We show that thanks to targeted optimizations the time and cost associated with interactive data exploration were reduced, enabling TissUUmaps 3 to handle the scale of today's spatial transcriptomics methods.Conclusion: TissUUmaps 3 provides significantly improved performance for large multiplex datasets as compared to previous versions. We envision TissUUmaps to contribute to broader dissemination and flexible sharing of largescale spatial omics data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy