SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Guiying) "

Sökning: WFRF:(Chen Guiying)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Haiyang, et al. (författare)
  • A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents
  • 2021
  • Ingår i: Nature Energy. - : NATURE PORTFOLIO. - 2058-7546. ; 6:11, s. 1045-1053
  • Tidskriftsartikel (refereegranskat)abstract
    • The power conversion efficiencies (PCEs) of laboratory-sized organic solar cells (OSCs), usually processed from low-boiling-point and toxic solvents, have reached high values of over 18%. However, there is usually a notable drop of the PCEs when green solvents are used, limiting practical development of OSCs. Herein, we obtain certificated PCEs over 17% in OSCs processed from a green solvent paraxylene (PX) by a guest-assisted assembly strategy, where a third component (guest) is employed to manipulate the molecular interaction of the binary blend. In addition, the high-boiling-point green solvent PX also enables us to deposit a uniform large-area module (36 cm(2)) with a high efficiency of over 14%. The strong molecular interaction between the host and guest molecules also enhances the operational stability of the devices. Our guest-assisted assembly strategy provides a unique approach to develop large-area and high-efficiency OSCs processed from green solvents, paving the way for industrial development of OSCs. Organic solar cells processed from green solvents are easier to implement in manufacturing yet their efficiency is low. Chen et al. devise a guest molecule to improve the molecular packing, enabling devices with over 17% efficiency.
  •  
2.
  • Hu, Junhao, et al. (författare)
  • Co-gasification of coal and biomass : Synergy, characterization and reactivity of the residual char
  • 2017
  • Ingår i: Bioresource Technology. - : Elsevier BV. - 0960-8524 .- 1873-2976. ; 244, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The synergy effect between coal and biomass in their co-gasification was studied in a vertical fixed bed reactor, and the physic-chemical structural characteristics and gasification reactivity of the residual char obtained from co-gasification were also investigated. The results shows that, conversion of the residual char and tar into gas is enhanced due to the synergy effect between coal and biomass. The physical structure of residual char shows more pore on coal char when more biomass is added in the co-gasification. The migration of inorganic elements between coal and biomass was found, the formation and competitive role of K2SiO3, KAlSiO4, and Ca3Al2(SiO4)(3) is a mechanism behind the synergy. The graphization degree is enhanced but size of graphite crystallite in the residual char decreases with biomass blending ratio increasing. TGA results strongly suggest the big difference in the reactivity of chars derived from coal and biomass in spite of influence from co-gasification.
  •  
3.
  • Chen, Guiying, et al. (författare)
  • Electron paramagnetic resonance study of the electron transfer reactions in photosystem II membrane preparations from Arabidopsis thaliana
  • 2011
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier BV. - 0005-2728 .- 1879-2650. ; 1807:2, s. 205-215
  • Tidskriftsartikel (refereegranskat)abstract
    • Arabidopsis thaliana is widely used as a model organism in plant biology as its genome has been sequenced and transformation is known to be efficient. A large number of mutant lines and genomic resources are available for Arabidopsis. All this makes Arabidopsis a useful tool for studies of photosynthetic reactions in higher plants. In this study, photosystem II (PSII) enriched membranes were successfully isolated from thylakoids of Arabidopsis plants and for the first time the electron transfer cofactors in PSII were systematically studied using electron paramagnetic resonance (EPR) spectroscopy. EPR signals from both of the donor and acceptor sides of PSII, as well as from auxiliary electron donors were recorded. From the acceptor side of PSII, EPR signals from Q(A)(-)Fe(2+) and Phe(-)Q(A)(-)Fe(2+) as well as from the free Phe(-) radical were observed. The multiline EPR signals from the S-0- and S-2-states of CaMn4Ox-cluster in the water oxidation complex were characterized. Moreover, split EPR signals, the interaction signals from Y-Z center dot and CaMn4Ox-cluster in the S-0-, S-1-, S-2-, and the S-3-state were induced by illumination of the PSII membranes at 5 K and characterized. In addition, EPR signals from auxiliary donors Y-D center dot, Chl(+) and cytochrome b(559) were observed. In total, we were able to detect about 20 different EPR signals covering all electron transfer components in PSII. Use of this spectroscopic platform opens a possibility to study PSII reactions in the library of mutants available in Arabidopsis.
  •  
4.
  • Chen, Guiying, et al. (författare)
  • Stability of the S(3) and S(2) State Intermediates in Photosystem II Directly Probed by EPR Spectroscopy
  • 2012
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 51:1, s. 138-148
  • Tidskriftsartikel (refereegranskat)abstract
    • The stability of the S(3) and S(2) states of the oxygen evolving complex in photosystem II (PSII) was directly probed by EPR spectroscopy in PSII membrane preparations from spinach in the presence of the exogenous electron acceptor PpBQ at 1, 10, and 20 degrees C. The decay of the S(3) state was followed in samples exposed to two flashes by measuring the split S(3) EPR signal induced by near-infrared illumination at 5 K. The decay of the S(2) state was followed in samples exposed to one flash by measuring the S(2) state multiline EPR signal. During the decay of the S(3) state, the S(2) state multiline EPR signal first increased and then decreased in amplitude. This shows that the decay of the S(3) state to the S(1) state occurs via the S(2) state. The decay of the S(3) state was biexponential with a fast kinetic phase with a few seconds decay half-time. This occurred in 10-20% of the PSII centers. The slow kinetic phase ranged from a decay half-time of 700 s (at 1 degrees C) to similar to 100 s (at 20 degrees C) in the remaining 80-90% of the centers. The decay of the S(2) state was also biphasic and showed quite similar kinetics to the decay of the S(3) state. Our experiments show that the auxiliary electron donor Y(D) was oxidized during the entire experiment. Thus, the reduced form of Y(D) does not participate to the fast decay of the S(2) and S(3) states we describe here. Instead, we suggest that the decay of the S(3) and S(2) states reflects electron transfer from the acceptor side of PSII to the donor side of PSII starting in the corresponding S state. It is proposed that this exists in equilibrium with Y(Z) according to S(3)Y(2) double left right arrow S(2)Y(Z)(.) in the case of the S(3) state decay and S(2)Y(Z) double left right arrow S(1)Y(Z)(.) in the case of the S(2) state decay. Two kinetic models are discussed, both developed with the assumption that the slow decay of the S(3) and S(2) states occurs in PSII centers where Y(Z) is also a fast donor to P(680)(+) working in the nanosecond time regime and that the fast decay of the S(3) and S(2) states occurs in centers where Y(Z) reduces P(680)(+) with slower microsecond kinetics. Our measurements also demonstrate that the split S(3) EPR signal can be used as a direct probe to the S(3) state and that it can provide important information about the redox properties of the S(3) state.
  •  
5.
  •  
6.
  • Sjöholm, Johannes, et al. (författare)
  • Split Electron Paramagnetic Resonance signal induction in photosystem II suggests two binding sites in the S2 state for the substrate analogue methanol
  • 2013
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 52:21, s. 3669-3677
  • Tidskriftsartikel (refereegranskat)abstract
    • Illuminating a photosystem II sample at low temperatures (here 5–10 K) yields so-called split signals detectable with continuous wave-electron paramagnetic resonance (CW-EPR). These signals reflect the oxidized, deprotonated radical of D1-Tyr161 (YZ•) in a magnetic interaction with the CaMn4 cluster in a particular S state. The intensity of the split EPR signals are affected by the addition of the water substrate analogue methanol. This was previously shown by the induction of split EPR signals from the S1, S3, and S0 states [Su, J.-H. et al. (2006) Biochemistry 45, 7617–7627.]. Here, we use two split EPR signals induced from photosystem II trapped in the S2 state to further probe the binding of methanol in an S state dependent manner. The signals are induced with either visible or near-infrared light illumination provided at 5–10 K where methanol cannot bind or unbind from its site. The results imply that the binding of methanol not only changes the magnetic properties of the CaMn4 cluster but also the hydrogen bond network in the oxygen evolving complex (OEC), thereby affecting the relative charge of the S2 state. The induction mechanisms for the two split EPR signals are different resulting in two different redox states, S2YZ• and S1YZ• respectively. The two states show different methanol dependence for their induction. This indicates the existence of two binding sites for methanol in the CaMn4 cluster. It is proposed that methanol binds to MnA with high affinity and to MnD with lower affinity. The molecular nature and S-state dependence of the methanol binding to each respective site are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy