SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Kuanwei) "

Sökning: WFRF:(Chen Kuanwei)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feng, Chungang, et al. (författare)
  • A cis-Regulatory Mutation of PDSS2 Causes Silky-Feather in Chickens
  • 2014
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 10:8, s. e1004576-
  • Tidskriftsartikel (refereegranskat)abstract
    • Silky-feather has been selected and fixed in some breeds due to its unique appearance. This phenotype is caused by a single recessive gene (hookless, h). Here we map the silky-feather locus to chromosome 3 by linkage analysis and subsequently fine-map it to an 18.9 kb interval using the identical by descent (IBD) method. Further analysis reveals that a C to G transversion located upstream of the prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) gene is causing silky-feather. All silky-feather birds are homozygous for the G allele. The silky-feather mutation significantly decreases the expression of PDSS2 during feather development in vivo. Consistent with the regulatory effect, the C to G transversion is shown to remarkably reduce PDSS2 promoter activity in vitro. We report a new example of feather structure variation associated with a spontaneous mutation and provide new insight into the PDSS2 function.
  •  
2.
  • Guo, Ying, et al. (författare)
  • Mapping and Functional Dissection of the Rumpless Trait in Piao Chicken Identifies a Causal Loss of Function Mutation in the Novel Gene Rum
  • 2023
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 40:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Rumpless chickens exhibit an abnormality in their tail development. The genetics and biology of this trait has been studied for decades to illustrate a broad variation in both the types of inheritance and the severity in the developmental defects of the tail. In this study, we created a backcross pedigree by intercrossing Piao (rumpless) with Xianju (normal) to investigate the genetic mechanisms and molecular basis of the rumpless trait in Piao chicken. Through genome-wide association and linkage analyses, the candidate region was fine-mapped to 798.5 kb (chromosome 2: 86.9 to 87.7 Mb). Whole-genome sequencing analyses identified a single variant, a 4.2 kb deletion, which was completely associated with the rumpless phenotype. Explorations of the expression data identified a novel causative gene, Rum, that produced a long, intronless transcript across the deletion. The expression of Rum is embryo-specific, and it regulates the expression of MSGN1, a key factor in regulating T-box transcription factors required for mesoderm formation and differentiation. These results provide genetic and molecular experimental evidence for a novel mechanism regulating tail development in chicken and report the likely causal mutation for the tail abnormity in the Piao chicken. The novel regulatory gene, Rum, will, due to its role in fundamental embryo development, be of interest for further explorations of a potential role in tail and skeletal development also in other vertebrates.
  •  
3.
  • Guo, Ying, et al. (författare)
  • Researching on the fine structure and admixture of the worldwide chicken population reveal connections between populations and important events in breeding history
  • 2021
  • Ingår i: Evolutionary Applications. - : John Wiley & Sons. - 1752-4571.
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we have evaluated the general genomic structure and diversity and studied the divergence resulting from selection and historical admixture events for a collection of worldwide chicken breeds. In total, 636 genomes (43 populations) were sequenced from chickens of American, Chinese, Indonesian, and European origin. Evaluated populations included wild junglefowl, rural indigenous chickens, breeds that have been widely used to improve modern western poultry populations and current com-mercial stocks bred for efficient meat and egg production. In-depth characteriza-tions of the genome structure and genomic relationships among these populations were performed, and population admixture events were investigated. In addition, the genomic architectures of several domestication traits and central documented events in the recent breeding history were explored. Our results provide detailed insights into the contributions from population admixture events described in the historical literature to the genomic variation in the domestic chicken. In particular, we find that the genomes of modern chicken stocks used for meat production both in eastern (Asia) and western (Europe/US) agriculture are dominated by contributions from heavy Asian breeds. Further, by exploring the link between genomic selective divergence and pigmentation, connections to functional genes feather coloring were confirmed.
  •  
4.
  • Wang, Yanqiang, et al. (författare)
  • The Crest Phenotype in Chicken Is Associated with Ectopic Expression of HOXC8 in Cranial Skin
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4, s. e34012-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Crest phenotype is characterised by a tuft of elongated feathers atop the head. A similar phenotype is also seen in several wild bird species. Crest shows an autosomal incompletely dominant mode of inheritance and is associated with cerebral hernia. Here we show, using linkage analysis and genome-wide association, that Crest is located on the E22C19W28 linkage group and that it shows complete association to the HOXC-cluster on this chromosome. Expression analysis of tissues from Crested and non-crested chickens, representing 26 different breeds, revealed that HOXC8, but not HOXC12 or HOXC13, showed ectopic expression in cranial skin during embryonic development. We propose that Crest is caused by a cis-acting regulatory mutation underlying the ectopic expression of HOXC8. However, the identification of the causative mutation(s) has to await until a method becomes available for assembling this chromosomal region. Crest is unfortunately located in a genomic region that has so far defied all attempts to establish a contiguous sequence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy