SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chen Shangzhi) "

Search: WFRF:(Chen Shangzhi)

  • Result 1-10 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Banerjee, Debashree, et al. (author)
  • Electrical tuning of radiative cooling at ambient conditions
  • 2023
  • In: Cell Reports Physical Science. - : ELSEVIER. - 2666-3864. ; 4:2
  • Journal article (peer-reviewed)abstract
    • Passive radiative cooling forms a sustainable means for cooling of objects through thermal radiation. Along with progress on static cooling systems, there is an emerging need for dynamic control to enable thermoregulation. Here, we demonstrate temperature regu-lation of devices at ambient pressure and temperature by electri-cally tuning their radiative cooling power. Our concept exploits the possibility to electrochemically tune the thermal emissivity and thereby cooling power of a conducting polymer, which enabled reversible control of device temperatures of around 0.25 degrees C at ambient conditions in a sky simulator. Besides tuneable radiative cooling by exposure to the sky, the concept could also contribute to reduced needs for indoor climate control by enabling dynamic control of thermal energy flows between indoor objects, such as be-tween people and walls.
  •  
3.
  • Chen, Shangzhi, et al. (author)
  • Conductive polymer nanoantennas for dynamic organic plasmonics
  • 2020
  • In: Nature Nanotechnology. - London : Nature Publishing Group. - 1748-3387 .- 1748-3395. ; 15
  • Journal article (peer-reviewed)abstract
    • Being able to dynamically shape light at the nanoscale is oneof the ultimate goals in nano-optics1. Resonant light–matterinteraction can be achieved using conventional plasmonicsbased on metal nanostructures, but their tunability is highlylimited due to a fixed permittivity2. Materials with switchablestates and methods for dynamic control of light–matterinteraction at the nanoscale are therefore desired. Here weshow that nanodisks of a conductive polymer can supportlocalized surface plasmon resonances in the near-infraredand function as dynamic nano-optical antennas, with their resonancebehaviour tunable by chemical redox reactions. Theseplasmons originate from the mobile polaronic charge carriersof a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf)polymer network. We demonstrate complete and reversibleswitching of the optical response of the nanoantennasby chemical tuning of their redox state, which modulatesthe material permittivity between plasmonic and dielectricregimes via non-volatile changes in the mobile chargecarrier density. Further research may study different conductivepolymers and nanostructures and explore their usein various applications, such as dynamic meta-optics andreflective displays.
  •  
4.
  • Chen, Shangzhi, et al. (author)
  • Dynamic Conducting Polymer Plasmonics and Metasurfaces
  • 2023
  • In: ACS Photonics. - : AMER CHEMICAL SOC. - 2330-4022. ; 10:3, s. 571-581
  • Journal article (peer-reviewed)abstract
    • Metals have been the dominant plasmonic materials for decades, but they suffer from limited tunability. By contrast, conducting polymers offer exceptional tunability and were recently introduced as a new category of dynamic plasmonic materials. Their charge carrier density can be drastically modulated via their redox state, offering reversible and gradual transitions between optically metallic and dielectric behavior. Nanoantennas made from conducting polymers can therefore be reversibly turned off and on again. This enables phase gradient metasurfaces with tunable functionalities, holding promise for applications such as video holograms. In this Perspective, we discuss the emergence of dynamic conducting polymer plasmonics as a new research direction, including recent developments, remaining challenges, and opportunities for future research. We hope that this Perspective will encourage more researchers to join the journey and contribute toward a rapid development of this interdisciplinary field.
  •  
5.
  • Chen, Shangzhi, et al. (author)
  • Dynamic plasmonics based on conducting polymers
  • 2023
  • In: International Conference on Metamaterials, Photonic Crystals and Plasmonics. - : META Conference. ; , s. 571-571
  • Conference paper (other academic/artistic)abstract
    • Plasmonics based on conventional metals are broadly used for biosensing and optoelectronic devices, but suffer from limited optical tunability. We recently demonstrated conducting polymers as a new category of plasmonic materials exhibiting excellent optical tunability. In this talk, I will briefly introduce the emergence, current status, and future prospects of using conducting polymers for dynamic plasmonics.
  •  
6.
  • Chen, Shangzhi, et al. (author)
  • On the anomalous optical conductivity dispersion of electrically conducting polymers : Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model
  • 2019
  • In: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 7:15, s. 4350-4362
  • Journal article (peer-reviewed)abstract
    • Electrically conducting polymers (ECPs) are becoming increasingly important in areas such as optoelectronics, biomedical devices, and energy systems. Still, their detailed charge transport properties produce an anomalous optical conductivity dispersion that is not yet fully understood in terms of physical model equations for the broad range optical response. Several modifications to the classical Drude model have been proposed to account for a strong non-Drude behavior from terahertz (THz) to infrared (IR) ranges, typically by implementing negative amplitude oscillator functions to the model dielectric function that effectively reduce the conductivity in those ranges. Here we present an alternative description that modifies the Drude model via addition of positive-amplitude Lorentz oscillator functions. We evaluate this so-called Drude-Lorentz (DL) model based on the first ultra-wide spectral range ellipsometry study of ECPs, spanning over four orders of magnitude: from 0.41 meV in the THz range to 5.90 eV in the ultraviolet range, using thin films of poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:Tos) as a model system. The model could accurately fit the experimental data in the whole ultrawide spectral range and provide the complex anisotropic optical conductivity of the material. Examining the resonance frequencies and widths of the Lorentz oscillators reveals that both spectrally narrow vibrational resonances and broader resonances due to localization processes contribute significantly to the deviation from the Drude optical conductivity dispersion. As verified by independent electrical measurements, the DL model accurately determines the electrical properties of the thin film, including DC conductivity, charge density, and (anisotropic) mobility. The ellipsometric method combined with the DL model may thereby become an effective and reliable tool in determining both optical and electrical properties of ECPs, indicating its future potential as a contact-free alternative to traditional electrical characterization.
  •  
7.
  • Chen, Shangzhi (author)
  • Optics of Conducting Polymer Thin Films and Nanostructures
  • 2021
  • Doctoral thesis (other academic/artistic)abstract
    • Intrinsically conducting polymers forms a category of doped conjugated polymers that can conduct electricity. Since their discovery in the late 1970s, they have been widely applied in many fields, ranging from optoelectronic devices to biosensors. The most common type of conducting polymers is poly(3,4-ethylenedioxythiophene), or PEDOT. PEDOT has been popularly used as electrodes for solar cells or light-emitting diodes, as channels for organic electrochemical transistors, and as p-type legs for organic thermoelectric generators. Although many studies have been dedicated to PEDOT-based materials, there has been a lack of a unified model to describe their optical properties across different spectral ranges. In addition, the interesting optical properties of PEDOT-based materials, benefiting from its semi-metallic character, have only been rarely studied and utilized, and could potentially enable new applications.Plasmonics is a research field focusing on interactions between light and metals, such as the noble metals (gold and silver). It has enabled various opportunities in fundamental photonics as well as practical applications, varying from biosensors to colour displays. This thesis explores highly conducting polymers as alternatives to noble metals and as a new type of active plasmonic materials. Despite high degrees of microstructural disorder, conducting polymers can possess electrical conductivity approaching that of poor metals, with particularly high conductivity for PEDOT deposited via vapour phase polymerization (VPP). In this thesis, we systematically studied the optical and structural properties of VPP PEDOT thin films and their nanostructures for plasmonics and other optical applications. We employed ultra-wide spectral range ellipsometry to characterize thin VPP PEDOT films and proposed an anisotropic Drude-Lorentz model to describe their optical conductivity, covering the ultraviolet, visible, infrared, and terahertz ranges. Based on this model, PEDOT doped with tosylate (PEDOT:Tos) presented negative real permittivity in the near infrared range. While this indicated optical metallic character, the material also showed comparably large imaginary permittivity and associated losses. To better understand the VPP process, we carefully examined films with a collection of microstructural and spectroscopic characterization methods and found a vertical layer stratification in these polymer films. We unveiled the cause as related to unbalanced transport of polymerization precursors. By selection of suitable counterions, e.g., trifluoromethane sulfonate (OTf), and optimization of reaction conditions, we were able to obtain PEDOT films with electrical conductivity exceeding 5000 S/cm. In the near infrared range from 1 to 5 µm, these PEDOT:OTf films provided a well-defined plasmonic regime, characterized by negative real permittivity and lower magnitude imaginary component. Using a colloidal lithography-based approach, we managed to fabricate nanodisks of PEDOT:OTf and showed that they exhibited clear plasmonic absorption features. The experimental results matched theoretical calculations and numerical simulations. Benefiting from their mixed ionic-electronic conducting characters, such organic plasmonic materials possess redox-tunable properties that make them promising as tuneable optical nanoantennas for spatiotemporally dynamic systems. Finally, we presented a low-cost and efficient method to create structural colour surfaces and images based on UV-treated PEDOT films on metallic mirrors. The concept generates beautiful and vivid colours through-out the visible range utilizing a synergistic effect of simultaneously modulating polymer absorption and film thickness. The simplicity of the device structure, facile fabrication process, and tunability make this proof-of-concept device a potential candidate for future low-cost backlight-free displays and labels.
  •  
8.
  • Chen, Shangzhi, et al. (author)
  • Redox-tunable structural colour images by UV-patterned conducting polymer nanofilms on metal surfaces
  • Other publication (other academic/artistic)abstract
    • Precise manipulation of light-matter interaction has enabled a wide variety of approaches to create bright and vivid structural colours. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches significantly impede their further development towards flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Herein, we present a simple and efficient method to generate structural colours based on nanoscale conducting polymer films prepared on metallic surfaces via vapour phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable colours from violet to red. Together with greyscale photomasks this enables fabrication of high-resolution colour images using single exposure steps. We further demonstrate spatiotemporal tuning of the structurally coloured surfaces and images via electrochemical modulation of the polymer redox state. The simple structure, facile fabrication, wide colour gamut, and dynamic colour tuning make this concept competitive for future multi-functional and smart displays.
  •  
9.
  • Chen, Shangzhi, et al. (author)
  • Tunable Structural Color Images by UV-Patterned Conducting Polymer Nanofilms on Metal Surfaces.
  • 2021
  • In: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 33:33
  • Journal article (peer-reviewed)abstract
    • Precise manipulation of light-matter interactions has enabled a wide variety of approaches to create bright and vivid structural colors. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive-index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches impede their further development toward flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Here, a novel method is presented to generate structural color images based on monochromic conducting polymer films prepared on metallic surfaces via vapor phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable structural colors from violet to red. Together with grayscale photomasks this enables facile fabrication of high-resolution structural color images. Dynamic tuning of colored surfaces and images via electrochemical modulation of the polymer redox state is further demonstrated. The simple structure, facile fabrication, wide color gamut, and dynamic color tuning make this concept competitive for applications like multifunctional displays.
  •  
10.
  • Chen, Shangzhi, et al. (author)
  • Unraveling vertical inhomogeneity in vapour phase polymerized PEDOT:Tos films
  • 2020
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 8, s. 18726-18734
  • Journal article (peer-reviewed)abstract
    • The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) forms a promising alternative to conventional inorganic conductors, where deposition of thin films via vapour phase polymerization (VPP) has gained particular interest owing to high electrical conductivity within the plane of the film. The conductivity perpendicular to the film is typically much lower, which may be related not only to preferential alignment of PEDOT crystallites but also to vertical stratification across the film. In this study, we reveal non-linear vertical microstructural variations across VPP PEDOT:Tos thin films, as well as significant differences in doping level between the top and bottom surfaces. The results are consistent with a VPP mechanism based on diffusion-limited transport of polymerization precursors. Conducting polymer films with vertical inhomogeneity may find applications in gradient-index optics, functionally graded thermoelectrics, and optoelectronic devices requiring gradient doping.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view