SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Xingyu) "

Sökning: WFRF:(Chen Xingyu)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Kristanl, Matej, et al. (författare)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • Ingår i: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
3.
  • Luo, Yifei, et al. (författare)
  • Technology Roadmap for Flexible Sensors
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:6, s. 5211-5295
  • Forskningsöversikt (refereegranskat)abstract
    • Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
  •  
4.
  • Cao, Qi, et al. (författare)
  • N-Type Conductive Small Molecule Assisted 23.5% Efficient Inverted Perovskite Solar Cells
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Because of the compatibility with tandem devices and the ability to be manufactured at low temperatures, inverted perovskite solar cells have generated far-ranging interest for potential commercial applications. However, their efficiency remains inadequate owing to various traps in the perovskite film and the restricted hole blocking ability of the electron transport layer. Thus, in this work, a wide-bandgap n-type semiconductor, 4,6-bis(3,5-di(pyridin-4-yl)phenyl)-2-phenylpyrimidine (B4PyPPM), to modify a perovskite film via an anti-solvent method is introduced. The nitrogen sites of pyrimidine and pyridine rings in B4PyPPM exhibit strong interactions with the undercoordinated lead ions in the perovskite material. These interactions can reduce the trap state densities and inhibit nonradiative recombination of the perovskite bulk. Moreover, B4PyPPM can partially aggregate on the perovskite surface, leading to an improvement in the hole-blocking ability at its interface. This modification can also increase the built-in potential and upshift the Fermi level of the modified perovskite film, promoting electron extraction to the electron transport layer. The champion device achieves a high efficiency of 23.51%. Meantime, the sealed device retains approximate to 80% of its initial performance under a maximum power point tracking for nearly 2400 h, demonstrating an excellent operational stability.
  •  
5.
  • Yang, Jiabao, et al. (författare)
  • Overcome Low Intrinsic Conductivity of NiOx Through Triazinyl Modification for Highly Efficient and Stable Inverted Perovskite Solar Cells
  • 2022
  • Ingår i: Solar RRL. - : John Wiley & Sons. - 2367-198X. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Nickel oxide (NiOx) is a promising hole transport material in inverted organic-inorganic metal halide perovskite solar cells. However, its low intrinsic conductivity hinders its further improvement in device performance. Here, we employ a trimercapto-s-triazine trisodium salt (TTTS) as a chelating agent of Ni2+ in the NiOx layer to improve its conductivity. Due to the electron-deficient triazine ring, the TTTS complexes with Ni2+ in NiOx via a strong Ni2+-N coordination bond and increases the ratio of Ni3+:Ni2+. The increased Ni3+ concentration adjusts the band structure of NiOx, thus enhancing hole density and mobility, eventually improving the intrinsic conductivity of NiOx. As a result, the device with TTTS modification displays a champion power conversion efficiency (PCE) of 22.81%. The encapsulated device based on a modified-NiOx layer maintains 94% of its initial power output at the maximum power point and continuous one-sun illumination for 1000 h at 45 degrees C. In addition, the unencapsulated target devices also maintain 92% at 60 +/- 5% relative humidity and 25 degrees C in the air for 5000 h; and 91% at 85 degrees C in a nitrogen atmosphere for 1000 h. The research provides an effective strategy to enhance PCE and stability of inverted PSCs via modifying NiOx films with triazine molecule.
  •  
6.
  • Zhang, Xing, et al. (författare)
  • Diagnosing NB plasmas on the EAST tokamak with new time-of-flight neutron spectrometer
  • 2014
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 54:10, s. 104008-
  • Tidskriftsartikel (refereegranskat)abstract
    • The new neutron spectrometer time-of-flight enhanced diagnostics (TOFED) for the EAST tokamak is presented and its characteristics are described in terms of simulation results, as well as the interface in the torus hall along with new neutral beam (NB) injectors. The use of TOFED for studies of the slowing down of NB-injected deuterons is illustrated. The implications of measuring the neutron emission on a long pulse machine are discussed together with the experimental challenges and diagnostic possibilities approaching those to be encountered in continuous operation.
  •  
7.
  • Leng, Jiewu, et al. (författare)
  • Unlocking the power of industrial artificial intelligence towards Industry 5.0: Insights, pathways, and challenges
  • 2024
  • Ingår i: Journal of manufacturing systems. - : Elsevier BV. - 0278-6125 .- 1878-6642. ; 73, s. 349-363
  • Forskningsöversikt (refereegranskat)abstract
    • With the continuous development of human-centric, resilient, and sustainable manufacturing towards Industry 5.0, Artificial Intelligence (AI) has gradually unveiled new opportunities for additional functionalities, new features, and tendencies in the industrial landscape. On the other hand, the technology-driven Industry 4.0 paradigm is still in full swing. However, there exist many unreasonable designs, configurations, and implementations of Industrial Artificial Intelligence (IndAI) in practice before achieving either Industry 4.0 or Industry 5.0 vision, and a significant gap between the individualized requirement and actual implementation result still exists. To provide insights for designing appropriate models and algorithms in the upgrading process of the industry, this perspective article classifies IndAI by rating the intelligence levels and presents four principles of implementing IndAI. Three significant opportunities of IndAI, namely, collaborative intelligence, self-learning intelligence, and crowd intelligence, towards Industry 5.0 vision are identified to promote the transition from a technology-driven initiative in Industry 4.0 to the coexistence and interplay of Industry 4.0 and a value-oriented proposition in Industry 5.0. Then, pathways for implementing IndAI towards Industry 5.0 together with key empowering techniques are discussed. Social barriers, technology challenges, and future research directions of IndAI are concluded, respectively. We believe that our effort can lay a foundation for unlocking the power of IndAI in futuristic Industry 5.0 research and engineering practice.
  •  
8.
  • Wang, Guilei, et al. (författare)
  • Study of SiGe selective epitaxial process integration with high-k and metal gate for 16/14 nm nodes FinFET technology
  • 2016
  • Ingår i: Microelectronic Engineering. - : Elsevier. - 0167-9317 .- 1873-5568. ; 163, s. 49-54
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the process integration of SiGe selective epitaxy on source/drain regions, for 16/14 nm nodes FinFET with high-k & metal gate has been presented. Selectively grown Si1-xGex (0.35 <= x <= 0.40) with boron concentration of 1 x 10(20) cm(-3) was used to elevate the source/drain of the transistors. The epi-quality, layer profile and strain amount of the selectively grown SiGe layers were also investigated by means of various characterizations. A series of prebaking experiments were performed for temperatures ranging from 740 to 825 degrees C in order to in situ clean the Si fins prior to the epitaxy. The results showed that the thermal budget needs to be limited to 780-800 degrees C in order to avoid any damages to the shape of Si fins but to remove the native oxide effectively which is essential for high epitaxial quality. The Ge content in SiGe layers on Si fins was determined from the strain measured directly by reciprocal space mappings using synchrotron radiation. Atomic layer deposition technique was applied to fill the gate trench with W using WF6 and B2H6 precursors. By such an AID approach, decent growth rate, low resistivity and excellent gap filling capability of W in pretty high aspect-ratio gate trench was realized. The as-fabricated FinFETs demonstrated decent electrical characteristics.
  •  
9.
  • Wang, Heyong, 1989-, et al. (författare)
  • Impacts of the Lattice Strain on Perovskite Light-Emitting Diodes
  • 2023
  • Ingår i: Advanced Energy Materials. - : Wiley-V C H Verlag GMBH. - 1614-6832 .- 1614-6840. ; 13:33
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of perovskite light-emitting diodes (PeLEDs) with both high efficiency and excellent stability remains challenging. Herein, a strong correlation between the lattice strain in perovskite films and the stability of resulting PeLEDs is revealed. Based on high-efficiency PeLEDs, the device lifetime is optimized by rationally tailoring the lattice strain in perovskite films. A PeLED with a high peak external quantum efficiency of 18.2% and a long lifetime of 151 h (T-70, under a current density of 20 mA cm(-2)) is realized with a minimized lattice strain in the perovskite film. In addition, an increase in the lattice strain is found during the long-time device stability test, indicating that the degradation of the local perovskite lattice structure could be one of the degradation mechanisms for long-term stable PeLEDs.
  •  
10.
  • Wang, Tong, et al. (författare)
  • Deep defect passivation and shallow vacancy repair via an ionic silicone polymer toward highly stable inverted perovskite solar cells
  • 2022
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 15:10, s. 4414-4424
  • Tidskriftsartikel (refereegranskat)abstract
    • Additive engineering is an effective strategy for defect passivation and performance improvement of perovskite solar cells (PSCs). However, few additives have achieved outstanding stability with high efficiency by simultaneously passivating deep and shallow defects. Herein, we design a novel ionic silicone polymer (PECL) with multi-active sites as an additive to modify inverted PSCs. The C-O groups in the PECL polymer can chelate with undercoordinated Pb2+ and Pb clusters to passivate deep defects; and the ionic groups in the PECL polymer can generate electrostatic interaction with both positively and negatively charged vacancies, which help to repair shallow defects. Moreover, we quantitatively reveal the effect of deep and shallow defects on the efficiency and stability of PSCs separately, by establishing the correlation between additives with different functional groups and the performance of devices. Consequently, the power conversion efficiency of the PECL-modified inverted PSC increases from 20.02% to 23.11%. More importantly, the encapsulated PSCs maintain 95% of their initial steady-state power output after 1500 hours under AM 1.5 illumination at the maximum power point at 45 degrees C. Therefore, we provide a universal guideline of polymer structure design for defect healing in stabilizing PSCs with high efficiency.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (9)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
Hagfeldt, Anders (4)
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Gorini, G (1)
Kelly, Ryan (1)
visa fler...
Zhao, Chao (1)
Li, Ying (1)
Moore, Matthew D. (1)
Liu, Jia (1)
Radamson, Henry H. (1)
Liu, Yang (1)
Nocente, M (1)
Tardocchi, M (1)
Wang, Fei (1)
Wang, Dong (1)
Liu, Fang (1)
Zhang, Yu (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Liu, Lei (1)
Berggren, Magnus, Pr ... (1)
Sörelius, Karl, 1981 ... (1)
Chen, Lei (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Wang, Lihui (1)
Backman, Lars (1)
Yan, Hong (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Wang, Jun (1)
Pollesello, Piero (1)
Li, Jing (1)
Conesa, Ana (1)
El-Esawi, Mohamed A. (1)
Zhang, Weijia (1)
Berg, Amanda, 1988- (1)
Li, Xin (1)
Li, Jian (1)
Marinello, Francesco (1)
visa färre...
Lärosäte
Uppsala universitet (6)
Linköpings universitet (4)
Kungliga Tekniska Högskolan (2)
Göteborgs universitet (1)
Högskolan i Halmstad (1)
Stockholms universitet (1)
visa fler...
Lunds universitet (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Medicin och hälsovetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy