SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Yani) "

Sökning: WFRF:(Chen Yani)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zheng, Kaibo, et al. (författare)
  • Inter-phase charge and energy transfer in Ruddlesden-Popper 2D perovskites : Critical role of the spacing cations
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 6:15, s. 6244-6250
  • Tidskriftsartikel (refereegranskat)abstract
    • Photo-generated charge carrier dynamics in Ruddlesden-Popper 2D perovskites with linear (n-BA) and branched (iso-BA) butylamine as spacing cations have been studied by using transient absorption and time-resolved photoluminescence spectroscopies. Both n-BA and iso-BA perovskites consist of mixed-phase 2D quantum wells with various layer thicknesses, where the photo-generated charges undergo inter-phase charge transfer from thinner quantum wells to thicker ones. By shortening the spacer from n-BA to iso-BA, the transfer rates are significantly increased, which can also diminish the charge accumulation in thin quantum wells induced by the unbalanced electron and hole charge transfer rates. Under high excitation intensity, the shorter spacing cation is found to further facilitate the energy transfer, which can compete with fast high-order carrier recombination and consequently improve the charge transfer efficiency. Intriguingly, we observe the existence of extra bulk 3D phases embedded within iso-BA perovskites, which can efficiently collect the confined charges within 2D phases and then transport them with faster carrier mobility and slower recombination rates.
  •  
2.
  • Chen, Yani, et al. (författare)
  • 2D Ruddlesden-Popper Perovskites for Optoelectronics
  • 2018
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648. ; 30:2, s. 1703487-1703487
  • Tidskriftsartikel (refereegranskat)abstract
    • Conventional 3D organic-inorganic halide perovskites have recently undergone unprecedented rapid development. Yet, their inherent instabilities over moisture, light, and heat remain a crucial challenge prior to the realization of commercialization. By contrast, the emerging 2D Ruddlesden-Popper-type perovskites have recently attracted increasing attention owing to their great environmental stability. However, the research of 2D perovskites is just in their infancy. In comparison to 3D analogues, they are natural quantum wells with a much larger exciton binding energy. Moreover, their inner structural, dielectric, optical, and excitonic properties remain to be largely explored, limiting further applications. This review begins with an introduction to 2D perovskites, along with a detailed comparison to 3D counterparts. Then, a discussion of the organic spacer cation engineering of 2D perovskites is presented. Next, quasi-2D perovskites that fall between 3D and 2D perovskites are reviewed and compared. The unique excitonic properties, electron-phonon coupling, and polarons of 2D perovskites are then be revealed. A range of their (opto)electronic applications is highlighted in each section. Finally, a summary is given, and the strategies toward structural design, growth control, and photophysics studies of 2D perovskites for high-performance electronic devices are rationalized.
  •  
3.
  • Chen, Yani, et al. (författare)
  • Composition Engineering in Two-Dimensional Pb-Sn-Alloyed Perovskites for Efficient and Stable Solar Cells
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 10:25, s. 21343-21348
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmentally friendly tin (Sn)-based metallic halide perovskites suffer from oxidation and morphological issues. Here, we demonstrate the composition engineering of Pb-Sn-alloyed two-dimensional (2D) Ruddlesden-Popper perovskites, (BA)2(MA)3Pb4-xSnxI13, for efficient and stable solar cell applications. Smooth thin films with high surface coverage are readily formed without using any additive owing to the self-assembly characteristic of 2D perovskites. It is found that Sn plays a significant role in improving the crystallization and crystal orientation while narrowing the bandgap of Pb-Sn 2D perovskites. Photophysical studies further reveal that the optimal Sn ratio (25 mol %) based sample exhibits both minimized trap density and weakened quantum confinement for efficient charge separation. Consequently, the optimized (BA)2(MA)3Pb3SnI13-based solar cells yield the best power conversion efficiency close to 6% with suppressed hysteresis.
  •  
4.
  • Chen, Yani, et al. (författare)
  • Tailoring Organic Cation of 2D Air-Stable Organometal Halide Perovskites for Highly Efficient Planar Solar Cells
  • 2017
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6832. ; 7:18
  • Tidskriftsartikel (refereegranskat)abstract
    • 2D perovskites have recently been shown to exhibit significantly improved environmental stability. Derived from their 3D analogues, 2D perovskites are formed by inserting bulky alkylammonium cations in-between the anionic layers. However, these insulating organic spacer cations also hinder charge transport. Herein, such a 2D perovskite, (iso-BA)2(MA)3Pb4I13, that contains short branched-chain spacer cations (iso-BA+) and shows a remarkable increase of optical absorption and crystallinity in comparison to the conventional linear one, n-BA+, is designed. After applying the hot-casting (HC) technique, all these properties are further improved. The HC (iso-BA)2(MA)3Pb4I13 sample exhibits the best ambient stability by maintaining its initial optical absorption after storage of 840 h in an environmental chamber at 20 °C with a relative humidity of 60% without encapsulation. More importantly, the out-of-plane crystal orientation of (iso-BA)2(MA)3Pb4I13 film is notably enhanced, which increases cross-plane charge mobility. As a result, the highest power conversion efficiencies (PCEs) measured from for current density versus voltage curves afford 8.82% and 10.63% for room-temperature and HC-processed 2D perovskites based planar solar cells, respectively. However, the corresponding steady-state PCEs are remarkably lower, which is presumably due to the significant hysteresis phenomena caused by low charge extraction efficiency at interfaces of C60/2D perovskites.
  •  
5.
  • Dassie, Justin P., et al. (författare)
  • Targeted inhibition of prostate cancer metastases with an RNA aptamer to prostate-specific membrane antigen
  • 2014
  • Ingår i: Molecular Therapy. - : Nature Publishing Group. - 1525-0016 .- 1525-0024. ; 22:11, s. 1910-1922
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-targeted therapies (smart drugs), which selectively control cancer cell progression with limited toxicity to normal cells, have been developed to effectively treat some cancers. However, many cancers such as metastatic prostate cancer (PC) have yet to be treated with current smart drug technology. Here, we describe the thorough preclinical characterization of an RNA aptamer (A9g) that functions as a smart drug for PC by inhibiting the enzymatic activity of prostate-specific membrane antigen (PSMA). Treatment of PC cells with A9g results in reduced cell migration/invasion in culture and metastatic disease in vivo. Importantly, A9g is safe in vivo and is not immunogenic in human cells. Pharmacokinetic and biodistribution studies in mice confirm target specificity and absence of non-specific on/off-target effects. In conclusion, these studies provide new and important insights into the role of PSMA in driving carcinogenesis and demonstrate critical endpoints for the translation of a novel RNA smart drug for advanced stage PC. © The American Society of Gene amp; Cell Therapy.
  •  
6.
  • Peng, Jiajun, et al. (författare)
  • Insights into charge carrier dynamics in organo-metal halide perovskites : From neat films to solar cells
  • 2017
  • Ingår i: Chemical Society Reviews. - : Royal Society of Chemistry (RSC). - 0306-0012 .- 1460-4744. ; 46:19, s. 5714-5729
  • Forskningsöversikt (refereegranskat)abstract
    • Organo-metal halide perovskites have recently obtained world-wide attention as promising solar cell materials. They have broad and strong light absorption along with excellent carrier transport properties which partially explain their record power conversion efficiencies above 22%. However, the basic understanding of the underlying physical mechanisms is still limited and there remain large discrepancies among reported transport characteristics of perovskite materials. Notably, the carrier mobility of perovskite samples either in thin films or within solar cells obtained using different techniques can vary by up to 7-8 orders of magnitude. This tutorial review aims to offer insights into the scope, advantages, limitations and latest developments of the techniques that have been applied for studying charge carrier dynamics in perovskites. We summarize a comprehensive set of measurements including (1) time-resolved laser spectroscopies (transient absorption, time-resolved photoluminescence, terahertz spectroscopy and microwave conductivity); (2) electrical transient techniques (charge extraction by linearly increasing voltage and time-of-flight); and (3) steady-state methods (field-effect transistor, Hall effect and space charge limited current). Firstly, the basics of the above measurements are described. We then comparatively summarize the charge carrier characteristics of perovskite-based neat films, bilayer films and solar cells. Finally, we compare the different approaches in evaluating the key parameters of transport dynamics and unravel the reasons for the large discrepancies among these methods. We anticipate that this tutorial review will serve as the entry point for understanding the experimental results from the above techniques and provide insights into charge carrier dynamics in perovskite materials and devices.
  •  
7.
  • Yu, Shuang, et al. (författare)
  • Enabling room-temperature processed highly efficient and stable 2D Ruddlesden-Popper perovskite solar cells with eliminated hysteresis by synergistic exploitation of additives and solvents
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 7:5, s. 2015-2021
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein we demonstrate the favorable synergistic effect of an NH4Cl additive and DMSO solvent on 2D perovskites that are synthesized at room temperature. Interestingly, we observe the spontaneous formation of 3D phases within either NH4Cl or DMSO treated 2D perovskites, which plays a pivotal role in facilitating charge transport. It is revealed that NH4Cl increases charge carrier lifetime and passivate trap states within the 3D phase while DMSO promotes 2D/3D inter-phase charge transfer. These two competitive processes reach a delicate balance in DMSO and NH4Cl co-treated devices, which deliver a maximum PCE up to 13.41% with excellent air-stability and eliminated hysteresis. This is among the highest values reported for 2D RP perovskite (n = 4) based planar solar cells, particularly via all low-temperature solution fabrication.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy