SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Yanyan 1990) "

Sökning: WFRF:(Chen Yanyan 1990)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lanai, Victor, 1990, et al. (författare)
  • Differences in interaction of graphene/graphene oxide with bacterial and mammalian cell membranes
  • 2023
  • Ingår i: Nanoscale. - 2040-3372 .- 2040-3364. ; 16:3, s. 1156-1166
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene, a single layer, hexagonally packed two-dimensional carbon sheet is an attractive candidate for diverse applications including antibacterial potential and drug delivery. One of the knowledge gaps in biomedical application of graphene is the interaction of these materials with the cells. To address this, we investigated the interaction between graphene materials (graphene and graphene oxide) and plasma membranes of cells (bacterial and mammalian cells). The interactions of four of the most abundant phospholipids in bacteria and mammalian plasma membranes with graphene materials were studied using density functional theory (DFT) at the atomic level. The calculations showed that the mammalian phospholipids have stronger bonding to each other compared to bacterial phospholipids. When the graphene/graphene oxide sheet is approaching the phospholipid pairs, the bacterial pairs exhibit less repulsive interactions, thereby a more stable system with the sheets was found. We also assembled bacterial and mammalian phospholipids into liposomes. We further observed that the bacterial liposomes and cells let the graphene flakes penetrate the membrane. The differential scanning calorimetry measurements of liposomes revealed that the bacterial liposomes have the lowest heat capacity; this strengthens the theoretical predictions of weaker interaction between the bacterial phospholipids compared to the mammalian phospholipids. We further demonstrated that graphene oxide could be internalized into the mammalian liposomes without disrupting the membrane integrity. The results suggest that the weak bonding among bacteria phospholipids and less repulsive force when graphene materials approach, result in graphene materials interacting differently with the bacteria compared to mammalian cells.
  •  
2.
  • Chen, Yanyan, 1990, et al. (författare)
  • Graphene nanospikes exert bactericidal effect through mechanical damage and oxidative stress
  • 2024
  • Ingår i: Carbon. - 0008-6223. ; 218
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial contamination of biomedical surfaces is an important clinical challenge, driving the development of new antibacterial materials. Nanoprotrusions on the wing surface of some insects have intrinsic antibacterial and antifouling properties, which inspires fabrication of biomimetic nanopatterns on medical devices. Herein, we report a broad-spectrum bactericidal surface consisting of graphene nanospikes synthesized by plasma-enhanced chemical vapor deposition. Similar coatings have been reported before, but the killing mechanism and main parameters for efficiency of such coatings have not been clarified. We investigated the correlation of anti-biofilm efficiency of graphene nanospikes to their major physicochemical parameters. While height and thickness of nanospikes did not directly correlate with bactericidal effects, edge/defect density showed linear correlation with lethality for both Gram-negative and Gram-positive bacteria. We further demonstrated that the killing mechanism is synergistic, depending on physical rupture of bacterial membranes as well as considerable oxidative damage to the cells. Of note, for the first time, we quantify the level of oxidative stress induced by graphene nanospikes in two bacterial species using genetically encoded biosensors. Our work provides a fundamental understanding of the impact of various parameters of graphene nanostructures on the bactericidal efficiency, enabling rational design of graphene-based bactericidal surfaces.
  •  
3.
  • Chen, Yanyan, 1990, et al. (författare)
  • Interactions Between Graphene-Based Materials and Biological Surfaces: A Review of Underlying Molecular Mechanisms
  • 2021
  • Ingår i: Advanced Materials Interfaces. - : Wiley. - 2196-7350. ; 8:24
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the underlying molecular mechanism of how graphene materials (GMs) interact with biological surfaces is the key to develop safe and effective biomedical applications of GMs. Here, a systematic and comprehensive mechanistic perspective of interactions between pristine GMs and biological membranes is provided. To this end, first the known mechanisms of interaction between GMs and membrane components are summarized and classified, with a focus on phospholipids, cholesterol, and membrane proteins. Both experimental observations and computational simulations are included. Detailed experimental conditions and physiochemical properties of GMs are listed for each cited application. At the end of this review, current challenges and conflicts that limit biomedical applications of GMs are discussed. Based on reported mechanisms, guidelines for future studies to address the remaining challenges are proposed, specifically with respect to modulating the intrinsic properties of GMs for more efficient and safer therapeutic applications.
  •  
4.
  • Li, Feiran, 1993, et al. (författare)
  • Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eukaryotic cells are used as cell factories to produce and secrete multitudes of recombinant pharmaceutical proteins, including several of the current top-selling drugs. Due to the essential role and complexity of the secretory pathway, improvement for recombinant protein production through metabolic engineering has traditionally been relatively ad-hoc; and a more systematic approach is required to generate novel design principles. Here, we present the proteome-constrained genome-scale protein secretory model of yeast Saccharomyces cerevisiae (pcSecYeast), which enables us to simulate and explain phenotypes caused by limited secretory capacity. We further apply the pcSecYeast model to predict overexpression targets for the production of several recombinant proteins. We experimentally validate many of the predicted targets for alpha-amylase production to demonstrate pcSecYeast application as a computational tool in guiding yeast engineering and improving recombinant protein production. Due to the complexity of the protein secretory pathway, strategy suitable for the production of a certain recombination protein cannot be generalized. Here, the authors construct a proteome-constrained genome-scale protein secretory model for yeast and show its application in the production of different misfolded or recombinant proteins.
  •  
5.
  • Pandit, Santosh, 1987, et al. (författare)
  • Graphene-based sensor for detection of bacterial pathogens
  • 2021
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 21:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial colonization to biomedical surfaces and biofilm formation is one of the key challenges in the medical field. Recalcitrant biofilms on such surfaces cause serious infections which are difficult to treat using antimicrobial agents, due to their complex structure. Early detection of microbial colonization and monitoring of biofilm growth could turn the tide by providing timely guidance for treatment or replacement of biomedical devices. Hence, there is a need for sensors, which could generate rapid signals upon bacterial colonization. In this study, we developed a simple prototype sensor based on pristine, non-functionalized graphene. The detection principle is a change in electrical resistance of graphene upon exposure to bacterial cells. Without functionalization with specific receptors, such sensors cannot be expected to be selective to certain bacteria. However, we demonstrated that two different bacterial species can be detected and differentiated by our sensor due to their different growth dynamics, adherence pattern, density of adhered bacteria and microcolonies formation. These distinct behaviors of tested bacteria depicted distinguishable pattern of resistance change, resistance versus gate voltage plot and hysteresis effect. This sensor is simple to fabricate, can easily be miniaturized, and can be effective in cases when precise identification of species is not needed.
  •  
6.
  • Rahimi, Shadi, 1982, et al. (författare)
  • Cellular and subcellular interactions of graphene-based materials with cancerous and non-cancerous cells
  • 2022
  • Ingår i: Advanced Drug Delivery Reviews. - : Elsevier BV. - 0169-409X .- 1872-8294. ; 189
  • Forskningsöversikt (refereegranskat)abstract
    • Despite significant advances in early detection and personalized treatment, cancer is still among the leading causes of death globally. One of the possible anticancer approaches that is presently receiving a lot of attention is the development of nanocarriers capable of specific and efficient delivery of anticancer drugs. Graphene-based materials are promising nanocarriers in this respect, due to their high drug loading capacity and biocompatibility. In this review, we present an overview on the interactions of graphene-based materials with normal mammalian cells at the molecular level as well as cellular and subcellular levels, including plasma membrane, cytoskeleton, and membrane-bound organelles such as lysosomes, mitochondria, nucleus, endoplasmic reticulum, and peroxisome. In parallel, we assemble the knowledge about the interactions of graphene-based materials with cancerous cells, that are considered as the potential applications of these materials for cancer therapy including metastasis treatment, targeted drug delivery, and differentiation to non-cancer stem cells. We highlight the influence of key parameters, such as the size and surface chemistry of graphene-based materials that govern the efficiency of internalization and biocompatibility of these particles in vitro and in vivo. Finally, this review aims to correlate the key parameters of graphene-based nanomaterials specially graphene oxide, such as size and surface modifications, to their interactions with the cancerous and non-cancerous cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
  •  
7.
  • Yang, Yizhou, 1992, et al. (författare)
  • A self-standing three-dimensional covalent organic framework film
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Covalent crystals such as diamonds are a class of fascinating materials that are challenging to fabricate in the form of thin films. This is because spatial kinetic control of bond formation is required to create covalently bonded crystal films. Directional crystal growth is commonly achieved by chemical vapor deposition, an approach that is hampered by technical complexity and associated high cost. Here we report on a liquid-liquid interfacial approach based on physical-organic considerations to synthesize an ultrathin covalent crystal film. By distributing reactants into separate phases using hydrophobicity, the chemical reaction is confined to an interface that orients the crystal growth. A molecular-smooth interface combined with in-plane isotropic conditions enables the synthesis of films on a centimeter size scale with a uniform thickness of 13 nm. The film exhibits considerable mechanical robustness enabling a free-standing length of 37 µm, as well as a clearly anisotropic chemical structure and crystal lattice alignment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy