SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Yaqi) "

Sökning: WFRF:(Chen Yaqi)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Yaqi, et al. (författare)
  • Insight into the Extreme Side Reaction between LiNi0.5Co0.2Mn0.3O2 and Li1.3Al0.3Ti1.7(PO4)3 during Cosintering for All-Solid-State Batteries
  • 2023
  • Ingår i: Chemistry of Materials. - 1520-5002 .- 0897-4756. ; 35:22, s. 9647-9656
  • Tidskriftsartikel (refereegranskat)abstract
    • All-solid-sate batteries (ASSBs) with a NASICON-type solid-state electrolyte (SSE) of Li1.3Al0.3Ti1.7(PO4)3 (LATP) can be accepted as a promising candidate to significantly improve safety and energy density due to their high oxidation potential and high ionic conductivity. However, thermodynamic instability between the cathode and LATP is scarcely investigated during cosintering preparation for the integrated configuration of ASSBs. Herein, the structural compatibility between commercially layered LiNi0.5Co0.2Mn0.3O2 (NCM523) and LATP SSE was systematically investigated by cosintering at 600 °C. It is noticeable that an extreme side reaction between Li from NCM523 and phosphate from LATP happens during its cosintering process, leading to a severe phase transition from a layered to a spinel structure with high Li/Ni mixing. Consequently, the capacity of NCM523 is lost during the preparation of the NCM523-LATP composite cathode. Based on this, we suggested that the interface modification of the NCM523/LATP interface is valued significantly to inhibit this extreme side reaction, quickening the application of LATP-based ASSBs.
  •  
2.
  • Chen, Yaqi, et al. (författare)
  • Two Birds with One Stone: Using Indium Oxide Surficial Modification to Tune Inner Helmholtz Plane and Regulate Nucleation for Dendrite-free Lithium Anode
  • 2022
  • Ingår i: Small Methods. - : Wiley. - 2366-9608. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium metal has been considered as the most promising anode material due to its distinguished specific capacity of 3860 mAh g–1 and the lowest reduction potential of -3.04 V versus the Standard Hydrogen Electrode. However, the practicalization of Li-metal batteries (LMBs) is still challenged by the dendritic growth of Li during cycling, which is governed by the surface properties of the electrodepositing substrate. Herein, a surface modification with indium oxide on the copper current collector via magnetron sputtering, which can be spontaneously lithiated to form a composite of lithium indium oxide and Li-In alloy, is proposed. Thus, the growth of Li dendrites is effectively suppressed via regulating the inner Helmholtz plane modified with LiInO2 to foster the desolvation of Li-ion and induce the nucleation of Li-metal in two-dimensions through electro-crystallization with Li-In alloy. Using the In2O3 modification, the Li-metal anode exhibits outstanding cyclic stability, and LMBs with lithium cobalt oxide cathode present excellent capacity retention (above 80% over 600 cycles). Enlightening, the scalable magnetron sputtering method reported here paves a novel way to accelerate the practical application of the Li anode in LMBs to pursue higher energy density.
  •  
3.
  • Jiao, Xingxing, et al. (författare)
  • Insight of electro-chemo-mechanical process inside integrated configuration of composite cathode for solid-state batteries
  • 2023
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • The complicated electro-chemo-mechanical process that occurs inside the composite cathode for solid-state batteries (SSBs), is of first importance to be insighted for the development of SSBs to seek higher energy density. Herein, exampled with layered transition-metal oxide of LiNixCoyMn1-x-yO2 (NCM), an electro-chemo-mechanical model containing electrochemical kinetics, finite-strain constitutive model and cohesive zone model was built to uncover the impact of ionic conductivity and Young's modulus (E) of solid-state electrolyte (SE) on the electro-chemo-mechanical process inside composite cathode and the intergranular failure of single cathode particle. The intergranular failure of NCM particles is powerfully determined by the Young's modulus of SE and the primary particle size, which is postponed by the coarse-primary NCM with soft SE of E=∼2 GPa. Compared with Young's modulus, increasing the ionic conductivity can uniform the distribution of both Li-ion and stress in the whole composite NCM cathode, realizing improved electrochemical performance with larger normalized capacity and lower the interfacial impendence. Hence, high-adequate ionic conductivity of 5 × 10−4 S cm−1 and soft mechanical property of E=∼2 GPa can be proposed as the guideline of SE for great electrochemical performance with prolongated lifespan of composite NCM cathode, paving an avenue to foster the application of SSBs.
  •  
4.
  • Jiao, Xingxing, et al. (författare)
  • Viability of all-solid-state lithium metal battery coupled with oxide solid-state electrolyte and high-capacity cathode
  • 2024
  • Ingår i: Journal of Energy Chemistry. - 2095-4956. ; 91, s. 122-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g−1 and oxide-based ceramic solid-state electrolytes (SE), e.g., garnet-type Li7La3Zr2O12 (LLZO), all-state-state lithium metal batteries (ASLMBs) have been widely accepted as the promising alternatives for providing the satisfactory energy density and safety. However, its applications are still challenged by plenty of technical and scientific issues. In this contribution, the co-sintering temperature at 500 °C is proved as a compromise method to fabricate the composite cathode with structural integrity and declined capacity fading of LiNi0.5Co0.2Mn0.3O2 (NCM). On the other hand, it tends to form weaker grain boundary (GB) inside polycrystalline LLZO at inadequate sintering temperature for LLZO, which can induce the intergranular failure of SE during the growth of Li filament inside the unavoidable defect on the interface of SE. Therefore, increasing the strength of GB, refining the grain to 0.4 μm, and precluding the interfacial defect are suggested to postpone the electro-chemo-mechanical failure of SE with weak GB. Moreover, the advanced sintering techniques to lower the co-sintering temperature for both NCM-LLZO composite cathode and LLZO SE can be posted out to realize the viability of state-of-the-art ASLMBs with higher energy density as well as the guaranteed safety.
  •  
5.
  • Yuan, Zijie, et al. (författare)
  • Study of the Corrosion Behavior of Cathode Current Collector in LiFSI Electrolyte
  • 2024
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Cycling aging is the one of the main reasons affecting the lifetime of lithium-ion batteries and the contribution of aluminum current collector corrosion to the ageing is not fully recognized. In general, aluminum is corrosion resistant to electrolyte since a non-permeable surface film of alumina is naturally formed. However, corrosion of aluminum current collector can still occur under certain conditions such as lithium bis(fluorosulfonyl)imide (LiFSI)-based electrolyte or high voltage. Herein, we investigates the corrosion of aluminum current collector in the electrolyte of 1.2 M LiFSI in ethylene carbonate (EC) and ethyl methyl carbonate (EMC) mixed solvents. The electrochemical results shows that the corrosion current of aluminum is enhanced by cycling time and potential, which is correlated with the surface species and morphology. The formation of AlF3, which is induced by deep penetration of F− anions through surface passivation film, leads to internal volume change and the surface crack in the end. Our work will be inspiring for future development of high-energy-density and high-power-density lithium-ion batteries in which the LiFSI salt will be intensively used.
  •  
6.
  • Zhang, Juqing, et al. (författare)
  • Super-enhancers conserved within placental mammals maintain stem cell pluripotency
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 119:40
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolu-tion in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in pla-cental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of plu-ripotency as well as species-specific modulation of the pluripotency-associated regula-tory networks in mammals.
  •  
7.
  • Zhang, Juqing, et al. (författare)
  • Super enhancers-Functional cores under the 3D genome
  • 2021
  • Ingår i: Cell Proliferation. - : John Wiley & Sons. - 0960-7722 .- 1365-2184. ; 54:2
  • Forskningsöversikt (refereegranskat)abstract
    • Complex biochemical reactions take place in the nucleus all the time. Transcription machines must follow the rules. The chromatin state, especially the three-dimensional structure of the genome, plays an important role in gene regulation and expression. The super enhancers are important for defining cell identity in mammalian developmental processes and human diseases. It has been shown that the major components of transcriptional activation complexes are recruited by super enhancer to form phase-separated condensates. We summarize the current knowledge about super enhancer in the 3D genome. Furthermore, a new related transcriptional regulation model from super enhancer is outlined to explain its role in the mammalian cell progress.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy