SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chen Yu 1990) "

Search: WFRF:(Chen Yu 1990)

  • Result 1-10 of 46
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, Ruibing, et al. (author)
  • Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast
  • 2022
  • In: Nature Chemical Biology. - : Springer Science and Business Media LLC. - 1552-4450 .- 1552-4469. ; 18:5, s. 520-529
  • Journal article (peer-reviewed)abstract
    • Advances in synthetic biology enable microbial hosts to synthesize valuable natural products in an efficient, cost-competitive and safe manner. However, current engineering endeavors focus mainly on enzyme engineering and pathway optimization, leaving the role of cofactors in microbial production of natural products and cofactor engineering largely ignored. Here we systematically engineered the supply and recycling of three cofactors (FADH2, S-adenosyl-l-methion and NADPH) in the yeast Saccharomyces cerevisiae, for high-level production of the phenolic acids caffeic acid and ferulic acid, the precursors of many pharmaceutical molecules. Tailored engineering strategies were developed for rewiring biosynthesis, compartmentalization and recycling of the cofactors, which enabled the highest production of caffeic acid (5.5 ± 0.2 g l−1) and ferulic acid (3.8 ± 0.3 g l−1) in microbial cell factories. These results demonstrate that cofactors play an essential role in driving natural product biosynthesis and the engineering strategies described here can be easily adopted for regulating the metabolism of other cofactors. [Figure not available: see fulltext.].
  •  
2.
  • Wu, Jingnan, 1994, et al. (author)
  • On the Conformation of Dimeric Acceptors and Their Polymer Solar Cells with Efficiency over 18 %
  • 2023
  • In: Angewandte Chemie International Edition. - : John Wiley & Sons. - 1433-7851 .- 1521-3773.
  • Journal article (peer-reviewed)abstract
    • The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular & pi;-& pi; interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.
  •  
3.
  • Chen, Yu, 1990, et al. (author)
  • Yeast optimizes metal utilization based on metabolic network and enzyme kinetics
  • 2021
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:12
  • Journal article (peer-reviewed)abstract
    • Metal ions are vital to metabolism, as they can act as cofactors on enzymes and thus modulate individual enzymatic reactions. Although many enzymes have been reported to interact with metal ions, the quantitative relationships between metal ions and metabolism are lacking. Here, we reconstructed a genome-scale metabolic model of the yeast Saccharomyces cerevisiae to account for proteome constraints and enzyme cofactors such as metal ions, named CofactorYeast. The model is able to estimate abundances of metal ions binding on enzymes in cells under various conditions, which are comparable to measured metal ion contents in biomass. In addition, the model predicts distinct metabolic flux distributions in response to reduced levels of various metal ions in the medium. Specifically, the model reproduces changes upon iron deficiency in metabolic and gene expression levels, which could be interpreted by optimization principles (i.e., yeast optimizes iron utilization based on metabolic network and enzyme kinetics rather than preferentially targeting iron to specific enzymes or pathways). At last, we show the potential of using the model for understanding cell factories that harbor heterologous iron-containing enzymes to synthesize high-value compounds such as p-coumaric acid. Overall, the model demonstrates the dependence of enzymes on metal ions and links metal ions to metabolism on a genome scale.
  •  
4.
  • Liu, Quanli, 1988, et al. (author)
  • Rewiring carbon metabolism in yeast for high level production of aromatic chemicals
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 10:1
  • Journal article (peer-reviewed)abstract
    • The production of bioactive plant compounds using microbial hosts is considered a safe, cost-competitive and scalable approach to their production. However, microbial production of some compounds like aromatic amino acid (AAA)-derived chemicals, remains an outstanding metabolic engineering challenge. Here we present the construction of a Saccharomyces cerevisiae platform strain able to produce high levels of p-coumaric acid, an AAA-derived precursor for many commercially valuable chemicals. This is achieved through engineering the AAA biosynthesis pathway, introducing a phosphoketalose-based pathway to divert glycolytic flux towards erythrose 4-phosphate formation, and optimizing carbon distribution between glycolysis and the AAA biosynthesis pathway by replacing the promoters of several important genes at key nodes between these two pathways. This results in a maximum p-coumaric acid titer of 12.5 g L−1 and a maximum yield on glucose of 154.9 mg g−1.
  •  
5.
  • Qin, Ning, 1990, et al. (author)
  • Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast
  • 2023
  • In: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 186:4, s. 748-763.e15
  • Journal article (peer-reviewed)abstract
    • Although many prokaryotes have glycolysis alternatives, it's considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism.
  •  
6.
  • Bu, Junling, et al. (author)
  • Catalytic promiscuity of O-methyltransferases from Corydalis yanhusuo leading to the structural diversity of benzylisoquinoline alkaloids
  • 2022
  • In: Horticulture Research. - : Oxford University Press (OUP). - 2662-6810 .- 2052-7276. ; 9
  • Journal article (peer-reviewed)abstract
    • O-methyltransferases play essential roles in producing structural diversity and improving the biological properties of benzylisoquinoline alkaloids (BIAs) in plants. In this study, Corydalis yanhusuo, a plant used in traditional Chinese medicine due to the analgesic effects of its BIA-active compounds, was employed to analyze the catalytic characteristics of O-methyltransferases in the formation of BIA diversity. Seven genes encoding O-methyltransferases were cloned, and functionally characterized using seven potential BIA substrates. Specifically, an O-methyltransferase (CyOMT2) with highly efficient catalytic activity of both 4′- and 6-O-methylations of 1-BIAs was found. CyOMT6 was found to perform two sequential methylations at both 9- and 2-positions of the essential intermediate of tetrahydroprotoberberines, (S)-scoulerine. Two O-methyltransferases (CyOMT5 and CyOMT7) with wide substrate promiscuity were found, with the 2-position of tetrahydroprotoberberines as the preferential catalytic site for CyOMT5 (named scoulerine 2-O-methyltransferase) and the 6-position of 1-BIAs as the preferential site for CyOMT7. In addition, results of integrated phylogenetic molecular docking analysis and site-directed mutation suggested that residues at sites 172, 306, 313, and 314 in CyOMT5 are important for enzyme promiscuity related to O-methylations at the 6- and 7-positions of isoquinoline. Cys at site 253 in CyOMT2 was proved to promote the methylation activity of the 6-position and to expand substrate scopes. This work provides insight into O-methyltransferases in producing BIA diversity in C. yanhusuo and genetic elements for producing BIAs by metabolic engineering and synthetic biology.
  •  
7.
  • Cao, Xuan, et al. (author)
  • Engineering yeast for high-level production of diterpenoid sclareol
  • 2023
  • In: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 75, s. 19-28
  • Journal article (peer-reviewed)abstract
    • The diterpenoid sclareol is an industrially important precursor for alternative sustainable supply of ambergris. However, its current production from plant extraction is neither economical nor environmental-friendly, since it requires laborious and cost-intensive purification procedures and plants cultivation is susceptible to environmental factors. Engineering cell factories for bio-manufacturing can enable sustainable production of natural products. However, stringent metabolic regulation poses challenges to rewire cellular metabolism for overproduction of compounds of interest. Here we used a modular approach to globally rewire the cellular metabolism for improving sclareol production to 11.4 g/L in budding yeast Saccharomyces cerevisiae, the highest reported diterpenoid titer in microbes. Metabolic flux analysis showed that modular balanced metabolism drove the metabolic flux toward the biosynthesis of targeted molecules, and transcriptomic analysis revealed that the expression of central metabolism genes was shaped for a new balanced metabolism, which laid a foundation in extensive metabolic engineering of other microbial species for sustainable bio-production.
  •  
8.
  • Cronin, M. F., et al. (author)
  • Developing an Observing Air-Sea Interactions Strategy (OASIS) for the global ocean
  • 2022
  • In: Ices Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 80:2, s. 367-73
  • Journal article (peer-reviewed)abstract
    • The Observing Air-Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air-sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our "Theory of Change" relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObs'19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air-sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air-sea fluxes; and #3: improved representation of air-sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable-Accessible-Interoperable-Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean.
  •  
9.
  • Davies, Stuart J., et al. (author)
  • ForestGEO: Understanding forest diversity and dynamics through a global observatory network
  • 2021
  • In: Biological Conservation. - : Elsevier BV. - 0006-3207. ; 253
  • Journal article (peer-reviewed)abstract
    • ForestGEO is a network of scientists and long-term forest dynamics plots (FDPs) spanning the Earth's major forest types. ForestGEO's mission is to advance understanding of the diversity and dynamics of forests and to strengthen global capacity for forest science research. ForestGEO is unique among forest plot networks in its large-scale plot dimensions, censusing of all stems ≥1 cm in diameter, inclusion of tropical, temperate and boreal forests, and investigation of additional biotic (e.g., arthropods) and abiotic (e.g., soils) drivers, which together provide a holistic view of forest functioning. The 71 FDPs in 27 countries include approximately 7.33 million living trees and about 12,000 species, representing 20% of the world's known tree diversity. With >1300 published papers, ForestGEO researchers have made significant contributions in two fundamental areas: species coexistence and diversity, and ecosystem functioning. Specifically, defining the major biotic and abiotic controls on the distribution and coexistence of species and functional types and on variation in species' demography has led to improved understanding of how the multiple dimensions of forest diversity are structured across space and time and how this diversity relates to the processes controlling the role of forests in the Earth system. Nevertheless, knowledge gaps remain that impede our ability to predict how forest diversity and function will respond to climate change and other stressors. Meeting these global research challenges requires major advances in standardizing taxonomy of tropical species, resolving the main drivers of forest dynamics, and integrating plot-based ground and remote sensing observations to scale up estimates of forest diversity and function, coupled with improved predictive models. However, they cannot be met without greater financial commitment to sustain the long-term research of ForestGEO and other forest plot networks, greatly expanded scientific capacity across the world's forested nations, and increased collaboration and integration among research networks and disciplines addressing forest science.
  •  
10.
  • Lu, Hongzhong, 1987, et al. (author)
  • Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection
  • 2021
  • In: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 17:10
  • Journal article (peer-reviewed)abstract
    • Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome-scale metabolic models (GEMs) for 332 yeasts. These GEMs could comprehensively characterize trait diversity and predict enzyme functionality, thereby signifying that sequence-level evolution has shaped reaction networks towards new metabolic functions. Strikingly, using GEMs, we can mechanistically map different evolutionary events, e.g. horizontal gene transfer and gene duplication, onto relevant subpathways to explain metabolic plasticity. This demonstrates that gene family expansion and enzyme promiscuity are prominent mechanisms for metabolic trait gains, while GEM simulations reveal that additional factors, such as gene loss from distant pathways, contribute to trait losses. Furthermore, our analysis could pinpoint to specific genes and pathways that have been under positive selection and relevant for the formulation of complex metabolic traits, i.e. thermotolerance and the Crabtree effect. Our findings illustrate how multidimensional evolution in both metabolic network structure and individual enzymes drives phenotypic variations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 46
Type of publication
journal article (37)
research review (4)
book chapter (3)
conference paper (2)
Type of content
peer-reviewed (43)
other academic/artistic (3)
Author/Editor
Chen, Yu, 1990 (29)
Nielsen, Jens B, 196 ... (26)
Li, Feiran, 1993 (8)
Kerkhoven, Eduard, 1 ... (7)
Chen, Yun, 1978 (5)
Yuan, Le, 1994 (4)
show more...
Malhi, Yadvinder (3)
Gu, Irene Yu-Hua, 19 ... (3)
Zuleta, Daniel, 1990 (3)
Davies, Stuart J. (3)
Lu, Hongzhong, 1987 (3)
Li, Gang, 1991 (3)
Duque, Álvaro (3)
Chen, Peiyuan, 1983 (3)
Gustafsson, Johan, 1 ... (3)
Ewango, Corneille E. ... (3)
Kenfack, David (3)
Makana, Jean Remy (3)
Chang-Yang, Chia Hao (3)
Chen, Yu Yun (3)
Chuyong, George (3)
Chen, Z. (2)
Sun, Kai (2)
Ji, Boyang, 1983 (2)
Gao, Yuan (2)
Wang, Ying (2)
Yu, Wei (2)
Uriarte, María (2)
Jensen, M. K. (2)
Campbell, Kate, 1987 (2)
Zhou, Yongjin, 1984 (2)
Thompson, Jill (2)
Jiang, Junfeng (2)
Chen, Lin, 1990 (2)
Xia, Jianye (2)
Zhang, Yiming, 1986 (2)
Anton, Petre Mihail, ... (2)
Domenzain Del Castil ... (2)
Aguilar, Salomón (2)
Bourg, Norman A. (2)
Brockelman, Warren Y ... (2)
Bunyavejchewin, Sara ... (2)
Cao, Min (2)
Cárdenas, Dairon (2)
Clay, Keith (2)
Dattaraja, Handanake ... (2)
Ediriweera, Sisira (2)
Fernando, Edwino S. (2)
Foster, Robin (2)
Gunatilleke, I. A.U. ... (2)
show less...
University
Chalmers University of Technology (39)
University of Gothenburg (6)
Stockholm University (2)
Karlstad University (1)
Karolinska Institutet (1)
Language
English (46)
Research subject (UKÄ/SCB)
Natural sciences (37)
Engineering and Technology (21)
Medical and Health Sciences (7)
Agricultural Sciences (5)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view