SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cheng Shi 1980 ) "

Sökning: WFRF:(Cheng Shi 1980 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, Shi, 1980- (författare)
  • Integrated Antenna Solutions for Wireless Sensor and Millimeter-Wave Systems
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents various integrated antenna solutions for different types of systems and applications, e.g. wireless sensors, broadband handsets, advanced base stations, MEMS-based reconfigurable front-ends, automotive anti-collision radars, and large area electronics. For wireless sensor applications, a T-matched dipole is proposed and integrated in an electrically small body-worn sensor node. Measurement techniques are developed to characterize the port impedance and radiation properties. Possibilities and limitations of the planar inverted cone antenna (PICA) for small handsets are studied experimentally. Printed slot-type and folded PICAs are demonstrated for UWB handheld terminals. Both monolithic and hybrid integration are applied for electrically steerable array antennas. Compact phase shifters within a traveling wave array antenna architecture, on single layer substrate, is investigated for the first time. Radio frequency MEMS switches are utilized to improve the performance of reconfigurable antennas at higher frequencies. Using monolithic integration, a 20 GHz switched beam antenna based on MEMS switches is implemented and evaluated. Compared to similar work published previously, complete experimental results are here for the first time reported. Moreover, a hybrid approach is used for a 24 GHz switched beam traveling wave array antenna. A MEMS router is fabricated on silicon substrate for switching two array antennas on a LTCC chip. A concept of nano-wire based substrate integrated waveguides (SIW) is proposed for millimeter-wave applications. Antenna prototypes based on this concept are successfully demonstrated for automotive radar applications. W-band body-worn nonlinear harmonic radar reflectors are proposed as a means to improve automotive radar functionality. Passive, semi-passive and active nonlinear reflectors consisting of array antennas and nonlinear circuitry on flex foils are investigated. A new stretchable RF electronics concept for large area electronics is demonstrated. It incorporates liquid metal into microstructured elastic channels. The prototypes exhibit high stretchability, foldability, and twistability, with maintained electrical properties.
  •  
2.
  • Cheng, Shi, 1980-, et al. (författare)
  • Internal multiple-input, multiple-output antenna arrays for wireless wide area network and wireless local area network operation in seamless full metal cover laptops
  • 2014
  • Ingår i: IET Microwaves, Antennas & Propagation. - : Institution of Engineering and Technology (IET). - 1751-8725 .- 1751-8733. ; 8:2, s. 73-79
  • Tidskriftsartikel (refereegranskat)abstract
    • A concept for multiple-input, multiple-output antenna arrays, integrated in an ultrathin full metal cover laptop computer, is proposed. The antennas are for octa-band wireless wide area network (WWAN) and triple-band wireless localarea network (WLAN) operation. The proposed solution makes use of the gap between the metallic display lid and keyboard chassis to form notch and slot antenna arrays, thereby removing the need for additional protrusions or openings. Simulated aswell as measured performance is presented. The notch antenna array for WWAN exhibits wide impedance bandwidth, with more than 24 dB isolation from 690 MHz to 3 GHz, and a total efficiency better than −2.5 dB. The slot antenna array forWLAN shows more than 12 dB isolation and a total efficiency of more than −3 dB. Both arrays exhibit a very-low envelope correlation coefficient of less than 0.1 within their respective frequency bands.
  •  
3.
  • Li, Zheng, et al. (författare)
  • Inkjet Printed Disposable High-Rate On-Paper Microsupercapacitors
  • 2022
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 32:1, s. 2108773-
  • Tidskriftsartikel (refereegranskat)abstract
    • On-paper microsupercapacitors (MSCs) are a key energy storage component for disposable electronics that are anticipated to essentially address the increasing global concern of electronic waste. However, nearly none of the present on-paper MSCs combine eco-friendliness with high electrochemical performance (especially the rate capacity). In this work, highly reliable conductive inks based on the ternary composite of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), graphene quantum dots and graphene are developed for scalable inkjet printing of compact (footprint area ≈ 20 mm2) disposable MSCs on commercial paper substrates. Without any post treatment, the printed patterns attain a sheet resistance as low as 4 Ω ▫−1. The metal-free all-solid-state MSCs exhibit a maximum areal capacitance > 2 mF cm−2 at a high scan rate of 1000 mV s−1, long cycle life (>95% capacitance retention after 10 000 cycles), excellent flexibility, and long service time. Remarkably, the “totally metal-free” MSC arrays are fully inkjet printed on paper substrates and also exhibit high rate performance. The life cycle assessment indicates that these printed devices have much lower eco-toxicity and global warming potential than other on-paper MSCs.
  •  
4.
  •  
5.
  • Zhuang, Xiahai, et al. (författare)
  • Evaluation of algorithms for Multi-Modality Whole Heart Segmentation : An open-access grand challenge.
  • 2019
  • Ingår i: Medical Image Analysis. - : Elsevier BV. - 1361-8415 .- 1361-8423. ; 58
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of whole heart anatomy is a prerequisite for many clinical applications. Whole heart segmentation (WHS), which delineates substructures of the heart, can be very valuable for modeling and analysis of the anatomy and functions of the heart. However, automating this segmentation can be challenging due to the large variation of the heart shape, and different image qualities of the clinical data. To achieve this goal, an initial set of training data is generally needed for constructing priors or for training. Furthermore, it is difficult to perform comparisons between different methods, largely due to differences in the datasets and evaluation metrics used. This manuscript presents the methodologies and evaluation results for the WHS algorithms selected from the submissions to the Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, in conjunction with MICCAI 2017. The challenge provided 120 three-dimensional cardiac images covering the whole heart, including 60 CT and 60 MRI volumes, all acquired in clinical environments with manual delineation. Ten algorithms for CT data and eleven algorithms for MRI data, submitted from twelve groups, have been evaluated. The results showed that the performance of CT WHS was generally better than that of MRI WHS. The segmentation of the substructures for different categories of patients could present different levels of challenge due to the difference in imaging and variations of heart shapes. The deep learning (DL)-based methods demonstrated great potential, though several of them reported poor results in the blinded evaluation. Their performance could vary greatly across different network structures and training strategies. The conventional algorithms, mainly based on multi-atlas segmentation, demonstrated good performance, though the accuracy and computational efficiency could be limited. The challenge, including provision of the annotated training data and the blinded evaluation for submitted algorithms on the test data, continues as an ongoing benchmarking resource via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy