SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cheptou P. O.) "

Sökning: WFRF:(Cheptou P. O.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johnston, M. O., et al. (författare)
  • Correlations among fertility components can maintain mixed mating in plants
  • 2009
  • Ingår i: American Naturalist. - 0003-0147 .- 1537-5323. ; 173:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Classical models studying the evolution of self-fertilization in plants conclude that only complete selfing and complete outcrossing are evolutionarily stable. In contrast with this prediction, 42% of seed-plant species are reported to have rates of self-fertilization between 0.2 and 0.8. We propose that many previous models fail to predict intermediate selfing rates because they do not allow for functional relationships among three components of reproductive fitness: self-fertilized ovules, outcrossed ovules, and ovules sired by successful pollen export. Because the optimal design for fertility components may differ, conflicts among the alternative pathways to fitness are possible, and the greatest fertility may be achieved with some self-fertilization. Here we develop and analyze a model to predict optimal selfing rates that includes a range of possible relationships among the three components of reproductive fitness, as well as the effects of evolving inbreeding depression caused by deleterious mutations and of selection on total seed number. We demonstrate that intermediate selfing is optimal for a wide variety of relationships among fitness components and that inbreeding depression is not a good predictor of selfing-rate evolution. Functional relationships subsume the myriad effects of individual plant traits and thus offer a more general and simpler perspective on mating system evolution.
  •  
2.
  •  
3.
  • Caplat, Paul, et al. (författare)
  • Sophia Title
  • 2013
  • Ingår i: Oikos. - : Wiley. - 1600-0706 .- 0030-1299. ; 122:9, s. 1265-1274
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthesis Prediction and management of species responses to climate change is an urgent but relatively young research field. Therefore, climate change ecology must by necessity borrow from other fields. Invasion ecology is particularly well-suited to informing climate change ecology because both invasion ecology and climate change ecology address the trajectories of rapidly changing novel systems. Here we outline the broad range of active research questions in climate change ecology where research from invasion ecology can stimulate advances. We present ideas for how concepts, case-studies and methodology from invasion ecology can be adapted to improve prediction and management of species responses to climate change. A major challenge in this era of rapid climate change is to predict changes in species distributions and their impacts on ecosystems, and, if necessary, to recommend management strategies for maintenance of biodiversity or ecosystem services. Biological invasions, studied in most biomes of the world, can provide useful analogs for some of the ecological consequences of species distribution shifts in response to climate change. Invasions illustrate the adaptive and interactive responses that can occur when species are confronted with new environmental conditions. Invasion ecology complements climate change research and provides insights into the following questions: 1) how will species distributions respond to climate change? 2) how will species movement affect recipient ecosystems? And 3) should we, and if so how can we, manage species and ecosystems in the face of climate change? Invasion ecology demonstrates that a trait-based approach can help to predict spread speeds and impacts on ecosystems, and has the potential to predict climate change impacts on species ranges and recipient ecosystems. However, there is a need to analyse traits in the context of life-history and demography, the stage in the colonisation process (e.g. spread, establishment or impact), the distribution of suitable habitats in the landscape, and the novel abiotic and biotic conditions under which those traits are expressed. As is the case with climate change, invasion ecology is embedded within complex societal goals. Both disciplines converge on similar questions of when to intervene? and what to do? which call for a better understanding of the ecological processes and social values associated with changing ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy