SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cheray M) "

Sökning: WFRF:(Cheray M)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Venero, J. L., et al. (författare)
  • ARG1 expression in basal forebrain microglia modulates hippocampal innervation and cognition during postnatal development
  • 2023
  • Ingår i: Glia. - : John Wiley & Sons. - 0894-1491 .- 1098-1136. ; 71:Suppl. 1, s. E512-E512
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Diversity within microglia, the resident brain immune cells, is reported. Whether microglial subsets constitute different subtypes with intrinsic properties and unique functions has not been fully elucidated. Here, we describe a microglial subtype characterized by the expression of the enzyme Arginase-1, i.e.Arg1+microglia, which is found predominantly in the cholinergic neuron-rich forebrain region during early postnatal development. Arg1+microgliacontain cellular inclusions and exhibit a distinct molecular signature including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3and Mgl2. Arg1-knockout in microglia results in a deficient cholinergic innervation along with impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, impaired long-term potentiation and cognitive behavioural deficiencies in female mice. Our results expand on microglia diversity and provide insights into distinctive spatiotemporal functions exerted by microglial subtypes.
  •  
2.
  • Grabert, K, et al. (författare)
  • Proteome integral solubility alteration high-throughput proteomics assay identifies Collectin-12 as a non-apoptotic microglial caspase-3 substrate
  • 2023
  • Ingår i: Cell death & disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 14:3, s. 192-
  • Tidskriftsartikel (refereegranskat)abstract
    • Caspases are a family of proteins mostly known for their role in the activation of the apoptotic pathway leading to cell death. In the last decade, caspases have been found to fulfill other tasks regulating the cell phenotype independently to cell death. Microglia are the immune cells of the brain responsible for the maintenance of physiological brain functions but can also be involved in disease progression when overactivated. We have previously described non-apoptotic roles of caspase-3 (CASP3) in the regulation of the inflammatory phenotype of microglial cells or pro-tumoral activation in the context of brain tumors. CASP3 can regulate protein functions by cleavage of their target and therefore could have multiple substrates. So far, identification of CASP3 substrates has been performed mostly in apoptotic conditions where CASP3 activity is highly upregulated and these approaches do not have the capacity to uncover CASP3 substrates at the physiological level. In our study, we aim at discovering novel substrates of CASP3 involved in the normal regulation of the cell. We used an unconventional approach by chemically reducing the basal level CASP3-like activity (by DEVD-fmk treatment) coupled to a Mass Spectrometry screen (PISA) to identify proteins with different soluble amounts, and consequently, non-cleaved proteins in microglia cells. PISA assay identified several proteins with significant change in their solubility after DEVD-fmk treatment, including a few already known CASP3 substrates which validated our approach. Among them, we focused on the Collectin-12 (COLEC12 or CL-P1) transmembrane receptor and uncovered a potential role for CASP3 cleavage of COLEC12 in the regulation of the phagocytic capacity of microglial cells. Taken together, these findings suggest a new way to uncover non-apoptotic substrates of CASP3 important for the modulation of microglia cell physiology.
  •  
3.
  •  
4.
  • Cheray, M, et al. (författare)
  • Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme
  • 2020
  • Ingår i: Molecular cancer. - : Springer Science and Business Media LLC. - 1476-4598. ; 19:1, s. 36-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundLiterature reports that mature microRNA (miRNA) can be methylated at adenosine, guanosine and cytosine. However, the molecular mechanisms involved in cytosine methylation of miRNAs have not yet been fully elucidated. Here we investigated the biological role and underlying mechanism of cytosine methylation in miRNAs in glioblastoma multiforme (GBM).MethodsRNA immunoprecipitation with the anti-5methylcytosine (5mC) antibody followed by Array, ELISA, dot blot, incorporation of a radio-labelled methyl group in miRNA, and miRNA bisulfite sequencing were perfomred to detect the cytosine methylation in mature miRNA. Cross-Linking immunoprecipiation qPCR, transfection with methylation/unmethylated mimic miRNA, luciferase promoter reporter plasmid, Biotin-tagged 3’UTR/mRNA or miRNA experiments and in vivo assays were used to investigate the role of methylated miRNAs. Finally, the prognostic value of methylated miRNAs was analyzed in a cohorte of GBM pateints.ResultsOur study reveals that a significant fraction of miRNAs contains 5mC. Cellular experiments show that DNMT3A/AGO4 methylated miRNAs at cytosine residues inhibit the formation of miRNA/mRNA duplex and leading to the loss of their repressive function towards gene expression. In vivo experiments show that cytosine-methylation of miRNA abolishes the tumor suppressor function of miRNA-181a-5p miRNA for example. Our study also reveals that cytosine-methylation of miRNA-181a-5p results is associated a poor prognosis in GBM patients.ConclusionTogether, our results indicate that the DNMT3A/AGO4-mediated cytosine methylation of miRNA negatively.Graphical abstract
  •  
5.
  •  
6.
  • Stratoulias, Vassilis, et al. (författare)
  • ARG1-expressing microglia show a distinct molecular signature and modulate postnatal development and function of the mouse brain
  • 2023
  • Ingår i: Nature Neuroscience. - : Nature Publishing Group. - 1097-6256 .- 1546-1726. ; 26:6, s. 1008-1020
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.
  •  
7.
  •  
8.
  • Cartron, PF, et al. (författare)
  • Epigenetic protein complexes: the adequate candidates for the use of a new generation of epidrugs in personalized and precision medicine in cancer
  • 2020
  • Ingår i: Epigenomics. - : Future Medicine Ltd. - 1750-192X .- 1750-1911. ; 12:2, s. 171-177
  • Tidskriftsartikel (refereegranskat)abstract
    • Until recently, drug development in oncology was focused on treating most patients for a specific cancer type without taking in account the heterogeneity between these patients in term of response to treatment. Therefore, this type of broad treatment approach excludes the treatment of patient not responding to disease-specific common drugs. In this review, we focus on the different types of epigenetic drugs currently used as DNA methylation inhibitor agents and their limits in patient care due to their lack of specificity. We also highlight the emergence of a new type of epidrug with higher target specificity due to their original mechanism of action: the disruption of protein complexes involved in the epigenetic modifications.
  •  
9.
  • Cheray, M, et al. (författare)
  • Epigenetics Control Microglia Plasticity
  • 2018
  • Ingår i: Frontiers in cellular neuroscience. - : Frontiers Media SA. - 1662-5102. ; 12, s. 243-
  • Tidskriftsartikel (refereegranskat)
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy