SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chi Zexu) "

Sökning: WFRF:(Chi Zexu)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chi, Zexu, et al. (författare)
  • Coral-like WO3/BiVO4 photoanode constructed via morphology and facet engineering for antibiotic wastewater detoxification and hydrogen recovery
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 428
  • Tidskriftsartikel (refereegranskat)abstract
    • Morphology and facet engineering have been proved efficient strategies to prepare high-performance photoelectrochemical (PEC) materials. WO3/BiVO4 heterojunction photoanodes with different morphologies were prepared by simply controlling the amount of electrodeposited charge. The coral-like WO3/BiVO4 photoanode with the orientation growth of {110} and {011} active facets of BiVO4 exhibited the optimal PEC performance due to significantly enhanced separation and transfer of photogenerated charge carriers, while the exposure of {−121} facets showed negative effects. 4.71 mA·cm−2 and 2.9 mA·cm−2 of photocurrent densities were obtained for sulfite and water oxidation, respectively, superior to most reported results. Subsequently, a photoelectrochemical-chlorine (PEC-Cl) system was constructed for antibiotic wastewater detoxification with hydrogen recovery. The analysis results indicated that the system can quickly and effectively remove sulfamethoxazole and reduce its toxicity concurrent with high hydrogen yield. The reactive chlorine species (RCS), especially Cl2·− and ClO·, dominated the sulfamethoxazole removal. Possible degradation pathways of sulfamethoxazole were also elucidated.
  •  
2.
  • Chi, Zexu, et al. (författare)
  • The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation : A review
  • 2022
  • Ingår i: Green Energy and Environment. - : Elsevier BV. - 2096-2797 .- 2468-0257. ; 7:3, s. 372-393
  • Forskningsöversikt (refereegranskat)abstract
    • Photoelectrochemical (PEC) technology has been proved a promising approach to solve the problems of energy shortages and environmental pollution damages. It can convert unlimited solar energy resources into energy forms needed by mankind. The development of highly efficient photoanodes is a key step in realizing the large-scale practical application of PEC systems. However, the development of PEC photoanodes has been severely hindered by the issues of easy recombination of photo-generated charge carriers, low photon-to-electron conversion efficiency, poor photo-corrosion resistance, and low catalytic activity. Therefore, constructing high-performance and stable photoanodes is an urgent research field to promote the progress of PEC technology. The atomically thin molybdenum disulfide (AT-MoS2) with unique physical and chemical properties has been widely applied in the fabrication of PEC photoanodes. The AT-MoS2 based photoanodes have exhibited excellent PEC performance, which providing promising candidates for ideal PEC application. Here, we summarize the fundamental natures of MoS2 and present the research efforts in the preparation of AT-MoS2 based photoanodes. Strategies for the fabrication of high-efficient AT-MoS2 based photoanodes are emphasized to provide guidelines to advance emerging PEC photoanodes. Besides, perspectives for the development of more efficient AT-MoS2 based photoanodes are proposed.
  •  
3.
  • Wang, Meiyang, et al. (författare)
  • Alkali Metal Cations as Charge-Transfer Bridge for Polarization Promoted Solar-to-H2 Conversion
  • 2023
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 33:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Utilization of spontaneous polarization electric field of ferroelectric materials to realize the spatial separation and fast transfer of photogenerated charges has been regarded as a promising strategy to fabricate highly efficient photocatalysts. Herein, a novel heterostructure is constructed by coupling potassium poly(heptazine imide) (K-PHI) with ferroelectric BaxSr1-xTiO3 (BxST) through a facile electrostatic self-assembly strategy. The ionic species of K-PHI can neutralize the polarized charges in BxST to form intimate interfacial contact, substantially boosting the internal electric field. Notably, K+ cations intercalated into K-PHI act as charge-transfer bridge to promote migration and separation of photogenerated charge carriers. As a result, a significantly improved H2-evolution rate of 1087.4 µmol h−1 g−1 with an apparent quantum yield (AQY) of 8.05% at 420 nm is achieved over 5% K-PHI/B0.8ST, standing among the best polymeric carbon nitride-based photocatalysts reported up to date. Moreover, the extreme stability of the catalysts is evidenced by remaining outstanding catalytic performance even after storage for half a year. This strategy can be extended to other alkali metal (Na+ and Cs+) modified polymeric materials, highlighting the key role of the bridging ions in constructing polarized heterostructure, which sheds light on the design of ferroelectric-assisted photocatalysts.
  •  
4.
  • Wang, Meiyang, et al. (författare)
  • Promoted photocatalytic degradation and detoxication performance for norfloxacin on Z-scheme phosphate-doped BiVO4/graphene quantum dots/P-doped g-C3N4
  • 2021
  • Ingår i: Separation and Purification Technology. - : Elsevier BV. - 1383-5866. ; 274
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel kind of Z-scheme ternary heterojunctions phosphate-doped BiVO4/graphene quantum dots/P-doped g-C3N4 (BVP/GQDs/PCN) were fabricated for the visible light degradation of norfloxacin (NOR), a typical antibiotic. Compared with binary type-II heterojunction phosphate-doped BiVO4/PCN (BVP/PCN), Z-scheme BVP/GQDs/PCN exhibited promoted interfacial charge transfer efficiency and broadened visible light response range, endowing them with excellent photodegradation activity and mineralization ability in NOR degradation. A high NOR degradation rate of 86.3% with a removal rate of total organic carbon (TOC) of 55.8% can be achieved over BVP/GQDs/PCN for 120 min visible light irradiation, which is an excellent performance compared with ever reported similar photocatalysts. In particular, because of the enhanced redox ability of photogenerated charges and the generation of multiple active species (eg. [rad]OH and [rad]O2−) over Z-scheme photocatalytic system, the accumulation of highly toxic degradation intermediates was greatly inhibited, and a better detoxication performance was obtained compared to PCN and BVP/PCN. This work may shed light on the inhibition of highly toxic degradation intermediates of antibiotics by regulating the charge transfer mechanism, photocatalytic active species, and the degradation pathway of antibiotics.
  •  
5.
  • Yu, Han, et al. (författare)
  • The exploration of Ti/SnO2-Sb anode/air diffusion cathode/UV dual photoelectric catalytic coupling system for the biological harmless treatment of real antibiotic industrial wastewater
  • 2021
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 412
  • Tidskriftsartikel (refereegranskat)abstract
    • The real antibiotic industrial wastewater with the characteristics of complex compositions, biological toxic, and degradation-resistant, is still biologically toxic to the ecosystem and human health even if the discharge standards have been met after treatment by traditional methods. Therefore, the biological harmless treatment of real antibiotic industrial wastewater is a valuable and meaningful research field. For the first time, a novel Ti/SnO2-Sb anode/air diffusion cathode/UV dual photo-electro catalysis coupling system (T-A-PE) for real antibiotic industrial wastewater treatment was investigated. Non-significant degradation was found in raw wastewater with high TOC = 2.61 × 103 mg·L−1. However, the increasing TOC removal with more dilution times indicated adaptability of T-A-PE system with lower organic matter loading. The highest 95.6% removal of TOC was obtained at 120 min, with 7.06 mA·cm−2 of current density and 200 dilution times. The high mineralization efficiency of T-A-PE system surpassed those of pure photo and electro catalysis combined, suggesting a significant synergistic effect between photo and electro catalysis. Neutral condition and current density = 7.06 mA·cm−2 are prior for pollutants mineralization, while acidic/alkaline conditions and unproper current density may cause faster side reactions. The GC–MS results demonstrated that the number of pollutant category dropped from 26 to 6 after treatment, with the concentrations of remained ones also remarkably decreased. The acute toxicity analysis using a luminescent bacteria method indicated that the treated wastewater by T-A-PE system was biological harmless.
  •  
6.
  • Zhang, Zhenzong, et al. (författare)
  • Internal electric field engineering step-scheme–based heterojunction using lead-free Cs3Bi2Br9 perovskite–modified In4SnS8 for selective photocatalytic CO2 reduction to CO
  • 2022
  • Ingår i: Applied Catalysis B: Environmental. - : Elsevier BV. - 0926-3373. ; 313
  • Tidskriftsartikel (refereegranskat)abstract
    • This study focuses on improving photocatalytic CO2 reduction reaction (CRR) activity and modulating product selectivity. An In4SnS8/Cs3Bi2Br9-X (ISS/CBB-X) heterojunction is prepared using novel lead-free Cs3Bi2Br9 perovskite quantum dot–modified In4SnS8, which shows considerable potential as photocatalysts for CRRs under visible light. The optimised ISS/CBB photocatalyst exhibits high activity and CO selectivity with a CO yield and selectivity of 9.55 μmol g−1 h−1 and 92.9%, respectively, 3.8 and 1.5 times higher than those of pristine ISS, respectively. Moreover, the step-scheme (S-scheme) mechanism can be fully confirmed via in situ irradiated X-ray photoelectron spectroscopy, in situ electron spin resonance, femtosecond time-resolved absorption spectroscopy and density functional theory calculations. Based on in situ diffuse reflectance spectra and theoretical investigations, the ISS/CBB shows a decreased energy barrier towards CO2 reduction to CO through an adsorbed ⁕COOH intermediate. This study contributes to the further understanding of fabricating efficient S-scheme-based photocatalysts for selective CRR.
  •  
7.
  • Zhao, Jingyun, et al. (författare)
  • Degradation of desphenyl chloridazon in a novel synergetic electrocatalytic system with Ni–Sb–SnO2/Ti anode and PEDOT/PSS-CNTs modified air diffusion cathode
  • 2021
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526. ; 300
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explored the depth treatment of desphenly chloridazon (DPC) wastewater by a novel synergetic dual-electrodes electrocatalytic (SDEs) system which consisted of Ni–Sb–SnO2/Ti anode (NSSTA) and PEDOT/PSS-CNTs modified activated carbon air diffusion cathode (PP-CNTs AC ADC). NSSTA exhibited an enhanced capability to produce reactive oxygen species (·OH and O3), its O3 production increased to 6.54 mg/L. PP-CNTs AC ADC was observed to have improved activity of catalyzing oxygen reduction reaction (ORR) with 648.23 mg/L H2O2 generated. Owing to the synergetic effect of O3 and H2O2, additional ·OH was obtained in SDEs system through the electro-peroxone reaction. Compared with the single-electrode electrocatalytic (SE) systems, the SDEs system showed superior pesticide degradation performance, higher mineralization current efficiency (MCE) and lower energy consumption (EC). In the SDEs system, the optimal 91.7% of DPC removal efficiency and 90.7% of DPC mineralization efficiency were obtained within 150 min by electrocatalytic oxidation of 17.5 ppm and 25 ppm pesticide wastewater at the current density of 11.94 mA/cm2, respectively. The treated water showed reduced acute toxicity than that of the raw wastewater, which suggested that the SDEs system is a promising technology for depth treatment of the pesticide industry effluent with simultaneous decontamination and detoxification realized.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (6)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Yu, Han (7)
Chi, Zexu (7)
Yu, Hongbing (6)
Zhao, Jingyun (4)
Zhang, Zhenzong (3)
Wang, Meiyang (3)
visa fler...
Zhang, Yi (2)
Yu, Kai (2)
Dong, Heng (2)
Yang, Nan (1)
Zhang, Linus (1)
Li, Hui (1)
Pang, Bo (1)
Wang, Pan (1)
Wang, Hao (1)
Li, Wenjie (1)
Lou, Lan lan (1)
Ma, Tianyi (1)
Dong, Binbin (1)
Dou, Dexing (1)
Sun, Changfu (1)
visa färre...
Lärosäte
Lunds universitet (7)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy