SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chiaradia Massimo) "

Sökning: WFRF:(Chiaradia Massimo)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Callegaro, Sara, et al. (författare)
  • Upper and lower crust recycling in the source of CAMP basaltic dykes from southeastern North America
  • 2013
  • Ingår i: Earth and Planetary Science Letters. - 0012-821X .- 1385-013X. ; 376, s. 186-199
  • Tidskriftsartikel (refereegranskat)abstract
    • The densest dykes swarm of the Central Atlantic magmatic province (CAMP) occur in southeastern North America (SENA) and were intruded between 202 and 195 Ma during Pangea break-up. New combined geochemical data (major and trace elements, Sr–Nd–Pb–Os isotopes) constrain the mantle source of these magmatic bodies and their evolution path. While Sr–Nd isotopic compositions for SENA rocks (87Sr/86Sr200Ma 0.70438–0.70880 and 143Nd/144Nd200Ma 0.51251–0.51204) fall within the low-Ti CAMP field, Pb–Pb isotopes (206Pb/204Pb200Ma 17.46–18.85, 207Pb/204Pb200Ma 15.54–15.65, 208Pb/204Pb200Ma 37.47–38.76) are peculiar to this area of the CAMP and cover a considerable span of compositions, especially in 206Pb/204Pb200Ma. Given the generally unradiogenic Os isotopic compositions (187Os/188Os200Ma 0.127–0.144) observed and the lack of correlation between these and other geochemical markers, crustal contamination during the evolution of SENA dykes must have been limited (less than 10%). Thus the isotopic variation is interpreted to reside primarily within the mantle source. These observations, coupled with typical continental signatures in trace elements (positive anomaly in Pb and negative anomalies in Ti and Nb), require another means of conveying a continental flavor to these magmas, which is here hypothesized to be the shallow recycling within the upper mantle of subducted lower and upper crustal materials. Pseudo-ternary mixing models show that a maximum of 10% recycled crust is enough to explain their trace element patterns as well as their isotopic heterogeneity. Looking at the larger picture of the origin of the CAMP, the thermal contribution of a mantle plume cannot be ruled out due to the relatively high mantle potential temperatures (1430–1480 °C) calculated for high-Fo SENA olivines. Nevertheless, our results suggest that the chemical involvement of a mantle plume is negligible (less than 5%) if either a C- or an EM-flavored plume is considered. Rather, the possibility of a PREMA-flavored mantle plume, enriched by 5–20% recycled crustal material, remains a possible, though less plausible, source for these tholeiites.
  •  
2.
  • Jiang, Qiang, et al. (författare)
  • Origin of geochemically heterogeneous mid-ocean ridge basalts from the Macquarie Ridge Complex, SW Pacific
  • 2021
  • Ingår i: Lithos. - : Elsevier. - 0024-4937 .- 1872-6143. ; 380-381
  • Tidskriftsartikel (refereegranskat)abstract
    • The Macquarie Ridge Complex (MRC), located at the Australian–Pacific plate boundary south of New Zealand, is a rugged bathymetric ridge comprising a series of submarine seamounts and Macquarie Island, the only subaerial portion of the complex. Mid-ocean ridge basalts (MORBs) from Macquarie Island show various enrichments in incompatible elements with compositions ranging from typical normal MORB to enriched MORB. However, these basalts have isotopic compositions trending towards a high μ-like (μ = 238U/204Pb; HIMU) mantle component, which is unusual for MORB-type rocks. The origin of this mantle signature is not understood, and it is unclear whether this isotopic signature is characteristic of the entire MRC or unique to Macquarie Island. Here we report new major and trace element abundances, and Sr, Nd, and Pb isotopes for samples from the MRC seamounts and from new sampling sites on Macquarie Island. The geochemical and isotopic data show that the entire MRC comprises normal to enriched MORB. Mixing modelling indicates that the heterogeneous isotopic signatures of the MRC basalts are not derived from contamination of the nearby Balleny mantle plume but have affinities with that of the Cenozoic Zealandia intraplate HIMU-like basalts. We propose that the heterogeneous geochemical signatures of the MRC basalts are derived from amphibole-bearing garnet pyroxenite veins, which is supported by the rare earth element partial melting modelling and strong correlations between Nd and Pb isotopic ratios vs La/Sm. We posit that the pyroxenite veins were generated in the oceanic lithospheric mantle, which was metasomatised by hydrous and carbonatitic fluids/melts derived either from delaminated, metasomatised Zealandia subcontinental lithosphere mantle, or from subducted material in the asthenosphere. The subducted material could be derived from ancient and/or recent subduction along the former east Gondwana margin.
  •  
3.
  • Marzoli, Andrea, et al. (författare)
  • The Central Atlantic Magmatic Province (CAMP) in Morocco
  • 2019
  • Ingår i: Journal of Petrology. - : Oxford University Press (OUP). - 0022-3530 .- 1460-2415. ; 60:5, s. 945-996
  • Tidskriftsartikel (refereegranskat)abstract
    • The Central Atlantic Magmatic Province (CAMP) is a large igneous province (LIP) composed of basic dykes, sills, layered intrusions and lava flows emplaced before Pangea break-up and currently distributed on the four continents surrounding the Atlantic Ocean. One of the oldest, best preserved and most complete sub-provinces of the CAMP is located in Morocco. Geochemical, geochronologic, petrographic and magnetostratigraphic data obtained in previous studies allowed identification of four strato-chemical magmatic units, i.e. the Lower, Intermediate, Upper and Recurrent units. For this study, we completed a detailed sampling of the CAMP in Morocco, from the Anti Atlas in the south to the Meseta in the north. We provide a complete mineralogical, petrologic (major and trace elements on whole-rocks and minerals), geochronologic (40Ar/39Ar and U–Pb ages) and geochemical set of data (including Sr–Nd–Pb–Os isotope systematics) for basaltic and basaltic–andesitic lava flow piles and for their presumed feeder dykes and sills. Combined with field observations, these data suggest a very rapid (<0·3 Ma) emplacement of over 95% of the preserved magmatic rocks. In particular, new and previously published data for the Lower to Upper unit samples yielded indistinguishable 40Ar/39Ar (mean age = 201·2 ± 0·8 Ma) and U–Pb ages (201·57 ± 0·04 Ma), suggesting emplacement coincident with the main phase of the end-Triassic biotic turnover (c.201·5 to 201·3 Ma). Eruptions are suggested to have been pulsed with rates in excess of 10 km3/year during five main volcanic pulses, each pulse possibly lasting only a few centuries. Such high eruption rates reinforce the likelihood that CAMP magmatism triggered the end-Triassic climate change and mass extinction. Only the Recurrent unit may have been younger but by no more than 1 Ma. Whole-rock and mineral geochemistry constrain the petrogenesis of the CAMP basalts. The Moroccan magmas evolved in mid-crustal reservoirs (7–20 km deep) where most of the differentiation occurred. However, a previous stage of crystallization probably occurred at even greater depths. The four units cannot be linked by closed-system fractional crystallization processes, but require distinct parental magmas and/or distinct crustal assimilation processes. EC-AFC modeling shows that limited crustal assimilation (maximum c.5–8% assimilation of e.g. Eburnean or Pan-African granites) could explain some, but not all the observed geochemical variations. Intermediate unit magmas are apparently the most contaminated and may have been derived from parental magmas similar to the Upper basalts (as attested by indistinguishable trace element contents in the augites analysed for these units). Chemical differences between Central High Atlas and Middle Atlas samples in the Intermediate unit could be explained by distinct crustal contaminants (lower crustal rocks or Pan-African granites for the former and Eburnean granites for the latter). The CAMP units in Morocco are likely derived from 5–10% melting of enriched peridotite sources. The differences observed in REE ratios for the four units are attributed to variations in both source mineralogy and melting degree. In particular, the Lower basalts require a garnet peridotite source, while the Upper basalts were probably formed from a shallower melting region straddling the garnet–spinel transition. Recurrent basalts instead are relatively shallow-level melts generated mainly from spinel peridotites. Sr–Nd–Pb–Os isotopic ratios in the CAMP units from Morocco are similar to those of other CAMP sub-provinces and suggest a significant enrichment of the mantle-source regions by subducted crustal components. The enriched signature is attributed to involvement of about 5–10% recycled crustal materials introduced into an ambient depleted or PREMA-type mantle, while involvement of mantle-plume components like those sampled by present-day Central Atlantic Ocean Island Basalts (OIB, e.g. Cape Verde and Canary Islands) is not supported by the observed compositions. Only Recurrent basalts may possibly reflect a Central Atlantic plume-like signature similar to the Common or FOZO components.
  •  
4.
  • Merle, Renaud E., 1976-, et al. (författare)
  • 40Ar/39Ar ages and Sr–Nd–Pb–Os geochemistry of CAMP tholeiites from Western Maranhão basin (NE Brazil)
  • 2011
  • Ingår i: Lithos. - 0024-4937 .- 1872-6143. ; 122:3, s. 137-151
  • Tidskriftsartikel (refereegranskat)abstract
    • The Central Atlantic Magmatic Province (CAMP), emplaced at the Triassic–Jurassic (T–J) boundary (~200Ma), is among the largest igneous provinces on Earth. The Maranhão basin in NE Brazil is located around 700km inland and 2000km from the site of the earliest Pangea disruption. The CAMP tholeiites occur only in the western part of the basin and have been described as low and high-Ti. Here we document the occurrence of two sub-groups among the high-Ti tholeiites in the Western Maranhão basin. The major and trace elements and the Sr–Nd–Pb isotopic ratios define three chemical groups corresponding to the low-Ti (TiO2<1.3wt.%), high-Ti (TiO2~2.0wt.%) and evolved high-Ti (TiO2>3wt.%) western Maranhão basin tholeiites (WMBT). The new 40Ar/39Ar plateau ages obtained on plagioclase separates for high-Ti (199.7±2.4Ma) and evolved high-Ti WMBT (197.2±0.5Ma and 198.2±0.6Ma) are indistinguishable and identical to those of previously analyzed low-Ti WMBT (198.5±0.8Ma) and to the mean 40Ar/39Ar age of the CAMP (199±2.4Ma). We also present the first Re–Os isotopic data for CAMP basalts. The low and high-Ti samples display mantle-like initial (187Os/188Os)i ranging from 0.1267 to 0.1299, while the evolved high-Ti samples are more radiogenic ((187Os/188Os)i up to 0.184) We propose that the high-Ti WMBT were derived from the sub-lithospheric asthenosphere, and contaminated during ascent by interaction with the subcontinental lithospheric mantle (SCLM). The evolved high-Ti WMBT were derived from the same asthenospheric source but experienced crustal contamination. The chemical characteristics of the low-Ti group can be explained by partial melting of the most fertile portions of the SCLM metasomatized during paleo-subduction. Alternatively, the low-Ti WMBT could be derived from the sub-lithospheric asthenosphere but the resulting melts may have undergone contamination by the SCLM. The occurrences of high-Ti basalts are apparently not restricted to the area of initial continental disruption which may bring into question previous interpretations such as those relating high-Ti CAMP magmatism to the initiation of Atlantic ridge spreading or as the expression of a deep mantle plume. We propose that the CAMP magmatism in the Maranhão basin may be attributed to local hotter mantle conditions due to the combined effects of edge-driven convection and large-scale mantle warming under the Pangea supercontinent. The involvement of a mantle-plume with asthenosphere-like isotopic characteristics cannot be ruled out either as one of the main source components of the WMBT or as a heat supplier.
  •  
5.
  • Merle, Renaud E., 1976-, et al. (författare)
  • Sr, Nd, Pb and Os Isotope Systematics of CAMP Tholeiites from Eastern North America (ENA) : Evidence of a Subduction-enriched Mantle Source
  • 2013
  • Ingår i: Journal of Petrology. - : Oxford University Press (OUP). - 0022-3530 .- 1460-2415. ; 55:1, s. 133-180
  • Tidskriftsartikel (refereegranskat)abstract
    • The Central Atlantic Magmatic Province (CAMP) is one of the largest igneous provinces on Earth, with an areal extent exceeding 107 km2. Here we document the geochemical characteristics of CAMP basalts from Triassic–Jurassic basins in northeastern USA and Nova Scotia (Canada). The CAMP rocks occur as lava flows, sills and dykes. All of our analysed samples show chemical characteristics typical of CAMP basalts with low titanium content, which include enrichment in the most incompatible elements and negative Nb anomalies. All the basalts also show enriched Sr–Nd–Pb initial (t = 201 Ma) isotopic compositions (206Pb/204Pbini. = 18·155–18·691, 207Pb/204Pbini. = 15·616–15·668, 208Pb/204Pbini. = 38·160–38·616, 143Nd/144Ndini. = 0·512169–0·512499). On the basis of stratigraphy, rare earth element (REE) chemistry and Sr–Nd–Pb isotope composition, three chemical groups are defined. The Hook Mountain group, with the lowest La/Yb ratios, initial 206Pb/204Pbini. >18·5 and 143Nd/144Ndini. > 0·51238, comprises all the lastest and upper stratigraphic units. The Preakness group, with intermediate La/Yb ratios, 206Pb/204Pbini. > 18·5 and 0·51233 > 143Nd/144Ndini. > 0·51225, comprises the intermediate units. The Orange Mountain group has the highest La/Yb ratios and 143Nd/144Ndini. < 0·51235 and involves all the earliest and stratigraphically lowest units, including the entire North Mountain basalts from Nova Scotia. In this last group, three sub-groups may be distinguished: the Rapidan sill, which has 206Pb/204Pbini. higher than 18·5, the Shelburne sub-group, which has 143Nd/144Ndini. < 0·51225, and the remaining Orange Mt samples. With the exception of one sample, the Eastern North America (ENA) CAMP basalts display initial 187Os/188Os ratios in the range of mantle-derived magmas (<0·15). Simple modelling shows that the composition of the ENA CAMP basalts cannot plausibly be explained solely by crustal contamination of oceanic island basalt (OIB), mid-ocean ridge basalt (MORB) or oceanic plateau basalt (OPB) magmas. Mixing of such magma compositions with sub-continental lithospheric mantle (SCLM)-derived melts followed by crustal contamination, by either assimilation–fractional crystallization (AFC) or assimilation through turbulent ascent (ATA) processes is somewhat more successful. However, this latter scenario does not reproduce the REE and isotopic composition of the ENA CAMP in a fully satisfactory manner. Alternatively, we propose a model in which asthenospheric mantle overlying a subducted slab (i.e. mantle wedge) was enriched during Cambrian to Devonian subduction by sedimentary material, isotopically equivalent to Proterozoic–Lower Paleozoic crustal rocks. Subsequently, after subduction ceased, the isotopic composition of this mantle evolved by radioactive decay for another 170 Myr until the CAMP magmatic event. Varying amounts and compositions of the incorporated sedimentary component coupled with radiogenic ingrowth over time can account for the main geochemical characteristics of the ENA CAMP (enriched incompatible element patterns, negative Nb anomalies, enriched Sr–Nd–Pb isotopic composition) and the differences between the three chemical groups.
  •  
6.
  • Merle, Renaud, 1976-, et al. (författare)
  • Origin of widespread Cretaceous alkaline magmatism in the Central Atlantic : A single melting anomaly?
  • 2019
  • Ingår i: Lithos. - 0024-4937 .- 1872-6143. ; 342-343, s. 480-498
  • Tidskriftsartikel (refereegranskat)abstract
    • The age and origin of the Late Cretaceous magmatism on the North American and Iberian-African margins and the adjacent northern Central and Southern North Atlantic ocean are not well constrained due to the lack of appropriate data. To solve this issue, we used the 40Ar/39Ar geochronology and Sr-Nd-Pb isotopes geochemistry of basalts from the New England Seamounts (NES) and the J-Anomaly Ridge (JAR) as these localities on the North American margin are still poorly investigated. We obtained a reliable age of 82.39 ± 0.12 Ma (2σ) for the Nashville Seamount (NES) and an alteration age of ca. 76 Ma for the JAR. Our new dates from the New England Seamounts, combined with those available from the Tore–Madeira Rise and SW Portugal, on the Iberia–African margins, confirm an overlapping period of activity around 105-80 Ma on both the North American and Iberian-African margins and the adjacent oceanic basins. Plate kinematic reconstructions indicate that these magmatic occurrences were located within a ~1000 km radius within the yet narrow Atlantic Ocean. The J-Anomaly Ridge samples were most likely formed at the mid-Atlantic ridge around ~120 Ma. The Sr-Nd-Pb initial isotopic ratios from the New England seamounts show similarities with the chemical signature of the Tore–Madeira Rise and, to a lesser extent, SW Portugal. Moreover, New England Seamounts display a trend toward EMI isotopic end-member, similar to those documented in at the Late Cretaceous Godzilla seamount on the Tore–Madeira Rise and sills from ODP Site 1276. The shared chemical signature is distributed across a torus-shaped area of ~2000 × 2000 km at a near-fixed location on Earth and is not temporally-controlled, suggesting a large-scale chemical anomaly in the shallow mantle. Therefore, geochronological, geochemical and plate reconstructions imply a large-scale, anomalously fertile mantle source that generated widespread magmatism during the Late Cretaceous in the northern Central Atlantic.
  •  
7.
  • Saintilan, Nicolas J. D, et al. (författare)
  • A middle ordovician age for the laisvall sandstone-hosted Pb-Zn deposit, Sweden : A response to early caledonian orogenic activity
  • 2015
  • Ingår i: Economic geology and the bulletin of the Society of Economic Geologists. - : Society of Economic Geologists. - 0361-0128 .- 1554-0774. ; 110:7, s. 1779-1801
  • Tidskriftsartikel (refereegranskat)abstract
    • Ten sphalerite separates isolated from mineralized samples in proximal and distal positions relative to the proposed main feeder fault systems at the Laisvall deposit were used to obtain an absolute age determination of this world-class Pb-Zn deposit hosted by autochthonous Ediacaran to Lower Cambrian sandstone and located currently along the erosional front of the Scandinavian Caledonides in northern Sweden. Residue and leachate fractions of each separate were obtained using the crush-leaching technique. All samples correspond to sphalerite formed using reduced sulfur derived from thermochemical sulfate reduction, three of them from disseminated ore in the Lower Sandstone, two from the disseminated ore in the Upper Sandstone, and five from steeply dipping galena-sphalerite-calcite veinlets interpreted in previous works as remobilization of disseminated ores. The isotope dilution-thermal ionization mass spectrometry (ID-TIMS) data yield an overall complex Rb-Sr isotope pattern with two distinct trends in the 87Sr/86Sr vs. 87Rb/86Sr isochron diagram. The three sphalerite residues of disseminated mineralization from the Lower Sandstone orebody show Rb-Sr isotope systematics indicative of undisturbed primary precipitates, and yield an isochron model age of 467 ± 5 Ma (mean square weighted deviation, MSWD, 1.4). Since the isochron is based on three points, the obtained age is to be considered as preliminary. Yet, the obtained age is fully consistent with geologic evidence reported by previous authors and pointing to Middle Ordovician timing of ore formation. The ID-TIMS data were complemented by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) analyses on the same sphalerite samples. The data support the hypothesis that the measured ID-TIMS Rb and Sr contents in these sphalerite residues are held in the sphalerite structure itself and are not related to micro-inclusions. The most viable hypothesis, in agreement with published work, is that during rapid growth, sphalerite may incorporate Rb and Sr ions from the hydrothermal fluids in its structure, most probably in octahedral voids. By contrast, the second trend in the 87Sr/86Sr vs. 87Rb/86Sr space defined by most other sphalerite residues and corresponding inclusion fluid leachates from the Upper Sandstone orebody and the veinlet samples is too steep to account for a realistic isochron age determination. This steep linear trend is interpreted to represent a postmineralization disturbance involving fluids rich in Sr. This disturbance of the Rb-Sr isotope system is consistent with the presence of the steeply dipping galena-sphalerite-calcite veinlets and the fact that the Upper Sandstone is, in places, tectonically disrupted because of its proximity to the basal Caledonian décollement. The attempt to date the Granberget deposit, located in tectonically disrupted allochthonous units inside the Caledonian orogen, failed because the Rb-Sr isotope systematics of the three analyzed sphalerite samples are also disturbed. The obtained Middle Ordovician (467 ± 5 Ma) mineralization age at Laisvall can be interpreted as a far-field foreland response to an early Caledonian arc-continent collision and the subsequent development of a foreland basin. Basinal brines formed in the foredeep of the orogen could be conveyed cratonward, interact with permeable Baltica crystalline basement rocks, and resurge as metal-bearing fluids in sandstone at Laisvall along reactivated Paleoproterozoic crystalline basement faults. Mixing of metal-bearing brines with hydrocarbon and H2S-rich fluids in Ediacaran to Lower Cambrian sandstone may explain the initial Sr isotope signature (87Sr/86Sr = 0.715900 ± 60) of the isochron intersect
  •  
8.
  • Saintilan, Nicolas J. D, et al. (författare)
  • A refined genetic model for the Laisvall and Vassbo Mississippi Valley-type sandstone-hosted deposits, Sweden : constraints from paragenetic studies, organic geochemistry, and S, C, N, and Sr isotope data
  • 2016
  • Ingår i: Mineralium Deposita. - : Springer Science and Business Media LLC. - 0026-4598 .- 1432-1866. ; 51:5, s. 639-664
  • Tidskriftsartikel (refereegranskat)abstract
    • The current study has aimed to refine the previously proposed two-fluid mixing model for the Laisvall (sphalerite Rb-Sr age of 467 ± 5 Ma) and Vassbo Mississippi Valley-type deposits hosted in Ediacaran to Cambrian sandstone, Sweden. Premineralization cements include authigenic monazite, fluorapatite, and anatase in the Upper Sandstone at Laisvall, reflecting anoxic conditions during sandstone burial influenced by the euxinic character of the overlying carbonaceous middle Cambrian to Lower Ordovician Alum Shale Formation (δ 13Corg = −33.0 to −29.5 ‰, δ 15Norg = 1.5 to 3.3 ‰, 0.33 to 3.03 wt% C, 0.02 to 0.08 wt% N). The available porosity for epigenetic mineralization, including that produced by subsequent partial dissolution of pre-Pb-Zn sulfide calcite and barite cements, was much higher in calcite- and barite-cemented sandstone paleoaquifers (29 % by QEMSCAN mapping) than in those mainly cemented by quartz (8 %). A major change in the Laisvall plumbing system is recognized by the transition from barite cementation to Pb-Zn sulfide precipitation in sandstone. Ba-bearing, reduced, and neutral fluids had a long premineralization residence time (highly radiogenic 87S/86Sr ratios of 0.718 to 0.723) in basement structures. As a result of an early Caledonian arc-continent collision and the development of a foreland basin, fluids migrated toward the craton and expelled Ba-bearing fluids from their host structures into overlying sandstone where they deposited barite upon mixing with a sulfate pool (δ 34Sbarite = 14 to 33 ‰). Subsequently, slightly acidic brines initially residing in pre-Ediacaran rift sediments in the foredeep of the early Caledonian foreland basin migrated through the same plumbing system and acquired metals on the way. The bulk of Pb-Zn mineralization formed at temperatures between 120 and 180 °C by mixing of these brines with a pool of H2S (δ 34S = 24 to 29 ‰) produced via thermochemical sulfate reduction (TSR) with oxidation of hydrocarbons in sandstone. Other minor H2S sources are identified. Upward migration and fluctuation of the hydrocarbon-water interface in sandstone below shale aquicludes and the formation of H2S along this interface explain the shape of the orebodies that splay out like smoke from a chimney and the conspicuous alternating layers of galena and sphalerite. Intimate intergrowth of bitumen with sphalerite suggests that subordinate amounts of H2S might have been produced by TSR during Pb-Zn mineralization. Gas chromatograms of the saturated hydrocarbon fraction from organic-rich shale and from both mineralized and barren sandstone samples indicate that hydrocarbons migrated from source rocks in the overlying Alum Shale Formation buried in the foredeep into sandstone, where they accumulated in favorable traps in the forebulge setting.
  •  
9.
  • Saintilan, Nicolas J., et al. (författare)
  • Petroleum as source and carrier of metals in epigenetic sediment-hosted mineralization
  • 2019
  • Ingår i: Scientific Reports. - : Springer. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Sediment-hosted ore deposits contribute a significant amount (up to 65%) of the global resources of lead and zinc. Among them, the Mississippi-Valley type deposits and related oil fields often comprise large-scale hydrothermal systems where regional host rocks are stained with disseminated liquid petroleum (crude oil) and other organic compounds. Current models for the formation of those epigenetic Pb-Zn sulphide deposits consider that metals are mostly leached from basement rocks and their detrital erosional products, and transported by oxidized basinal hydrothermal fluids as chloride complexes. Sulphide precipitation mainly occurs when these basinal brines interact with fluids rich in reduced sulphur species produced mostly by thermochemical sulphate reduction (TSR) mediated by hydrocarbons. Here, using organic geochemistry and Pb isotopes, we provide evidence that petroleum and associated water were key for the formation of sulphide mineralization in the world-class sandstone-hosted ore deposit at Laisvall, not only by supplying reduced sulphur but also by contributing metals in significant amounts. The lead originally found in bitumen of the Alum Shale Formation was transported —during an arc-continent collisional event— by liquid petroleum and associated water to the site of sulphide mineralization. The alteration of petroleum by TSR made lead available for precipitation as sulphide. The petroleum-associated lead represents 40 to 60% of the metal budget in the deposit, the remainder being sourced by leaching of basement rocks.
  •  
10.
  • Saintilan, Nicholas J., et al. (författare)
  • Polyphase vein mineralization in the Fennoscandian Shield at Åkerlandet, Järvsand, and Laisvall along the erosional front of the Caledonian orogen, Sweden
  • 2017
  • Ingår i: Mineralium Deposita. - : Springer. - 0026-4598 .- 1432-1866. ; 52:6, s. 823-844
  • Tidskriftsartikel (refereegranskat)abstract
    • The Åkerlandet, Järvsand, and Laisvall deposits in Sweden are calcite-fluorite-sulfide vein deposits and occurrences located close to the current erosional front of the Caledonian orogen and hosted by crystalline basement rocks in the Fennoscandian Shield. At Laisvall, basement-hosted veinlets occur beneath Ediacaran to Cambrian sandstones that host a strata-bound Pb-Zn deposit. The mineralized fractures at Åkerlandet and Järvsand occur along fault systems oriented N–S to NNW–SSE. Veins or veinlets strike NNW–SSE and NW–SE at Åkerlandet, NNE–SSW at Järvsand, and NNW–SSE and NNE–SSW to NE–SW at Laisvall. At Åkerlandet and Järvsand, fractures acted as conduits for hydrothermal fluids of variable composition and formed during separate tectonic events. At Åkerlandet, the fault zone with NNW–SSE strike shows kinematic indicators consistent with ~NE–SW bulk horizontal extension. At Järvsand, the calcite-fluorite-galena veins formed along R-Riedel shears related to the host N–S to NNW–SSE fault system. The kinematic indicators are consistent with ~NW–SE bulk horizontal extension, similar to the extensional deformation during the later part of the Caledonian orogeny (Silurian to Devonian). At Åkerlandet, adularia-quartz deposition was followed by sphalerite ± galena and finally by precipitation of fluorite and calcite. 40Ar-39Ar thermochronology of a single adularia sample did not yield a well-defined plateau age but the gas released at higher temperatures suggests an early Tonian (980 to 950 Ma) crystallization age, i.e., during the later part of the Sveconorwegian orogeny, although the data do not exclude other less likely interpretations. Previous fluid inclusion microthermometry and geochronological studies and new petrographic and geochemical results suggest that sphalerite ± galena mineralization formed from saline, relatively oxidizing, moderate-temperature, and slightly acidic hydrothermal fluids, either during the Ediacaran or the Middle Ordovician. Metals and H2S were derived from local basement rocks. Based on petrographic evidence, rare earth element composition, and S, C, and O isotope data, fluorite and calcite precipitated under near neutral and relatively reducing conditions. Occurrence of solid bitumen in veins at Åkerlandet and C and O isotope data of calcite at Åkerlandet and in the Laisvall basement veinlets suggest that the precipitation of calcite and fluorite was triggered by interaction of hot and evolved hydrothermal fluids (87Sr/86Sr = 0.718–0.732) with organic matter. Structural, petrographic, and geochemical data at Laisvall suggest that the basement structures hosting calcite-fluorite ± pyrite veinlets were utilized in the Middle Ordovician as the plumbing system for the oxidizing, slightly acidic, metal-bearing brines that caused the economic Pb-Zn mineralization in the overlying sandstones
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy