SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chinello C.) "

Sökning: WFRF:(Chinello C.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Contessotto, P., et al. (författare)
  • Elastin-like recombinamers-based hydrogel modulates post-ischemic remodeling in a non-transmural myocardial infarction in sheep
  • 2021
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 13:581
  • Tidskriftsartikel (refereegranskat)abstract
    • Ischemic heart disease is a leading cause of mortality due to irreversible damage to cardiac muscle. Inspired by the post-ischemic microenvironment, we devised an extracellular matrix (ECM)-mimicking hydrogel using catalyst-free click chemistry covalent bonding between two elastin-like recombinamers (ELRs). The resulting customized hydrogel included functional domains for cell adhesion and protease cleavage sites, sensitive to cleavage by matrix metalloproteases overexpressed after myocardial infarction (MI). The scaffold permitted stromal cell invasion and endothelial cell sprouting in vitro. The incidence of non-transmural infarcts has increased clinically over the past decade, and there is currently no treatment preventing further functional deterioration in the infarcted areas. Here, we have developed a clinically relevant ovine model of non-transmural infarcts induced by multiple suture ligations. Intramyocardial injections of the degradable ELRs-hydrogel led to complete functional recovery of ejection fraction 21 days after the intervention. We observed less fibrosis and more angiogenesis in the ELRs-hydrogel-treated ischemic core region compared to the untreated animals, as validated by the expression, proteomic, glycomic, and histological analyses. These findings were accompanied by enhanced preservation of GATA4(+) cardiomyocytes in the border zone of the infarct. We propose that our customized ECM favors cardiomyocyte preservation in the border zone by modulating the ischemic core and a marked functional recovery. The functional benefits obtained by the timely injection of the ELRs-hydrogel in a clinically relevant MI model support the potential utility of this treatment for further clinical translation.
  •  
2.
  • Contessotto, P., et al. (författare)
  • Reproducing extracellular matrix adverse remodelling of non-ST myocardial infarction in a large animal model
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The rising incidence of non-ST-segment elevation myocardial infarction (NSTEMI) and associated long-term high mortality constitutes an urgent clinical issue. Unfortunately, the study of possible interventions to treat this pathology lacks a reproducible pre-clinical model. Indeed, currently adopted small and large animal models of MI mimic only full-thickness, ST-segment-elevation (STEMI) infarcts, and hence cater only for an investigation into therapeutics and interventions directed at this subset of MI. Thus, we develop an ovine model of NSTEMI by ligating the myocardial muscle at precise intervals parallel to the left anterior descending coronary artery. Upon histological and functional investigation to validate the proposed model and comparison with STEMI full ligation model, RNA-seq and proteomics show the distinctive features of post-NSTEMI tissue remodelling. Transcriptome and proteome-derived pathway analyses at acute (7 days) and late (28 days) post-NSTEMI pinpoint specific alterations in cardiac post-ischaemic extracellular matrix. Together with the rise of well-known markers of inflammation and fibrosis, NSTEMI ischaemic regions show distinctive patterns of complex galactosylated and sialylated N-glycans in cellular membranes and extracellular matrix. Identifying such changes in molecular moieties accessible to infusible and intra-myocardial injectable drugs sheds light on developing targeted pharmacological solutions to contrast adverse fibrotic remodelling. The study of the pathophysiology and possible interventions for non-ST-segment elevation myocardial infarction is hindered by the lack of a reproducible pre-clinical model. Here, authors develop an ovine model to reproduce post-ischemic remodeling in non-ST myocardial infarction and reveal distinct complex sugar moieties in cellular membranes and extracellular matrix patterns in infarcted tissue.
  •  
3.
  • Ardo, Shane, et al. (författare)
  • Pathways to electrochemical solar-hydrogen technologies
  • 2018
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 11:10, s. 2768-2783
  • Forskningsöversikt (refereegranskat)abstract
    • Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/ or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community.
  •  
4.
  • Spelat, R., et al. (författare)
  • Metabolic reprogramming and membrane glycan remodeling as potential drivers of zebrafish heart regeneration
  • 2022
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of the zebrafish heart to regenerate following injury makes it a valuable model to deduce why this capability in mammals is limited to early neonatal stages. Although metabolic reprogramming and glycosylation remodeling have emerged as key aspects in many biological processes, how they may trigger a cardiac regenerative response in zebrafish is still a crucial question. Here, by using an up-to-date panel of transcriptomic, proteomic and glycomic approaches, we identify a metabolic switch from mitochondrial oxidative phosphorylation to glycolysis associated with membrane glycosylation remodeling during heart regeneration. Importantly, we establish the N- and O-linked glycan structural repertoire of the regenerating zebrafish heart, and link alterations in both sialylation and high mannose structures across the phases of regeneration. Our results show that metabolic reprogramming and glycan structural remodeling are potential drivers of tissue regeneration after cardiac injury, providing the biological rationale to develop novel therapeutics to elicit heart regeneration in mammals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy