SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chiribiri Amedeo) "

Sökning: WFRF:(Chiribiri Amedeo)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dewey, Marc, et al. (författare)
  • Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia
  • 2020
  • Ingår i: Nature Reviews Cardiology. - : Springer Nature. - 1759-5002 .- 1759-5010. ; 17:7, s. 427-450
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.
  •  
2.
  • Scannell, Cian M., et al. (författare)
  • Feasibility of free-breathing quantitative myocardial perfusion using multi-echo Dixon magnetic resonance imaging
  • 2020
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic contrast-enhanced quantitative first-pass perfusion using magnetic resonance imaging enables non-invasive objective assessment of myocardial ischemia without ionizing radiation. However, quantification of perfusion is challenging due to the non-linearity between the magnetic resonance signal intensity and contrast agent concentration. Furthermore, respiratory motion during data acquisition precludes quantification of perfusion. While motion correction techniques have been proposed, they have been hampered by the challenge of accounting for dramatic contrast changes during the bolus and long execution times. In this work we investigate the use of a novel free-breathing multi-echo Dixon technique for quantitative myocardial perfusion. The Dixon fat images, unaffected by the dynamic contrast-enhancement, are used to efficiently estimate rigid-body respiratory motion and the computed transformations are applied to the corresponding diagnostic water images. This is followed by a second non-linear correction step using the Dixon water images to remove residual motion. The proposed Dixon motion correction technique was compared to the state-of-the-art technique (spatiotemporal based registration). We demonstrate that the proposed method performs comparably to the state-of-the-art but is significantly faster to execute. Furthermore, the proposed technique can be used to correct for the decay of signal due to T2* effects to improve quantification and additionally, yields fat-free diagnostic images.
  •  
3.
  • Tourais, Joao, et al. (författare)
  • High-Resolution Free-Breathing Quantitative First-Pass Perfusion Cardiac MR Using Dual-Echo Dixon With Spatio-Temporal Acceleration
  • 2022
  • Ingår i: Frontiers in Cardiovascular Medicine. - : Frontiers Media SA. - 2297-055X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: To develop and test the feasibility of free-breathing (FB), high-resolution quantitative first-pass perfusion cardiac MR (FPP-CMR) using dual-echo Dixon (FOSTERS; Fat-water separation for mOtion-corrected Spatio-TEmporally accelerated myocardial peRfuSion).Materials and Methods: FOSTERS was performed in FB using a dual-saturation single-bolus acquisition with dual-echo Dixon and a dynamically variable Cartesian k-t undersampling (8-fold) approach, with low-rank and sparsity constrained reconstruction, to achieve high-resolution FPP-CMR images. FOSTERS also included automatic in-plane motion estimation and T∗22* correction to obtain quantitative myocardial blood flow (MBF) maps. High-resolution (1.6 x 1.6 mm2) FB FOSTERS was evaluated in eleven patients, during rest, against standard-resolution (2.6 x 2.6 mm2) 2-fold SENSE-accelerated breath-hold (BH) FPP-CMR. In addition, MBF was computed for FOSTERS and spatial wavelet-based compressed sensing (CS) reconstruction. Two cardiologists scored the image quality (IQ) of FOSTERS, CS, and standard BH FPP-CMR images using a 4-point scale (1–4, non-diagnostic – fully diagnostic).Results: FOSTERS produced high-quality images without dark-rim and with reduced motion-related artifacts, using an 8x accelerated FB acquisition. FOSTERS and standard BH FPP-CMR exhibited excellent IQ with an average score of 3.5 ± 0.6 and 3.4 ± 0.6 (no statistical difference, p > 0.05), respectively. CS images exhibited severe artifacts and high levels of noise, resulting in an average IQ score of 2.9 ± 0.5. MBF values obtained with FOSTERS presented a lower variance than those obtained with CS.Discussion: FOSTERS enabled high-resolution FB FPP-CMR with MBF quantification. Combining motion correction with a low-rank and sparsity-constrained reconstruction results in excellent image quality.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy