SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chow Wah Soon) "

Sökning: WFRF:(Chow Wah Soon)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chow, Wah Soon, et al. (författare)
  • A tribute to Robert John Porra (august 7, 1931–may 16, 2019)
  • 2021
  • Ingår i: Photosynthesis Research. - : Springer Nature. - 0166-8595 .- 1573-5079. ; 147:2, s. 125-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Robert John Porra (7.8.1931–16.5.2019) is probably best known for his substantial practical contributions to plant physiology and photosynthesis by addressing the problems of both the accurate spectroscopic estimation and the extractability of chlorophylls in many organisms. Physiological data and global productivity estimates, in particular of marine primary productivity, are often quoted on a chlorophyll basis. He also made his impact by work on all stages of tetrapyrrole biosynthesis: he proved the C5 pathway to chlorophylls, detected an alternative route to protoporphyrin in anaerobes and the different origin of the oxygen atoms in anaerobes and aerobes. A brief review of his work is supplemented by personal memories of the authors.
  •  
2.
  • Chow, Wah Soon, et al. (författare)
  • Photoinactivation of photosystem II in leaves
  • 2005
  • Ingår i: Photosynthesis Research. - Dordrecht : Springer. - 0166-8595 .- 1573-5079. ; 84:1-3, s. 35-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinactivation of Photosystem II (PS II), the light-induced loss of ability to evolve oxygen, inevitably occurs under any light environment in nature, counteracted by repair. Under certain conditions, the extent of photoinactivation of PS II depends on the photon exposure (light dosage, x), rather than the irradiance or duration of illumination per se, thus obeying the law of reciprocity of irradiance and duration of illumination, namely, that equal photon exposure produces an equal effect. If the probability of photoinactivation (p) of PS II is directly proportional to an increment in photon exposure (p = kDeltax, where k is the probability per unit photon exposure), it can be deduced that the number of active PS II complexes decreases exponentially as a function of photon exposure: N = Noexp(-kx). Further, since a photon exposure is usually achieved by varying the illumination time (t) at constant irradiance (I), N = Noexp(-kI t), i.e., N decreases exponentially with time, with a rate coefficient of photoinactivation kI, where the product kI is obviously directly proportional to I. Given that N = Noexp(-kx), the quantum yield of photoinactivation of PS II can be defined as -dN/dx = kN, which varies with the number of active PS II complexes remaining. Typically, the quantum yield of photoinactivation of PS II is ca. 0.1micromol PS II per mol photons at low photon exposure when repair is inhibited. That is, when about 10(7) photons have been received by leaf tissue, one PS II complex is inactivated. Some species such as grapevine have a much lower quantum yield of photoinactivation of PS II, even at a chilling temperature. Examination of the longer-term time course of photoinactivation of PS II in capsicum leaves reveals that the decrease in N deviates from a single-exponential decay when the majority of the PS II complexes are inactivated in the absence of repair. This can be attributed to the formation of strong quenchers in severely-photoinactivated PS II complexes, able to dissipate excitation energy efficiently and to protect the remaining active neighbours against damage by light.
  •  
3.
  • Chow, Wah Soon, et al. (författare)
  • Quantifying and monitoring functional photosystem II and the stoichiometry of the two photosystems in leaf segments : approaches and approximations
  • 2012
  • Ingår i: Photosynthesis Research. - Dordrecht : Springer. - 0166-8595 .- 1573-5079. ; 113:1-3, s. 63-74
  • Forskningsöversikt (refereegranskat)abstract
    • Given its unique function in light-induced water oxidation and its susceptibility to photoinactivation during photosynthesis, photosystem II (PS II) is often the focus of studies of photosynthetic structure and function, particularly in environmental stress conditions. Here we review four approaches for quantifying or monitoring PS II functionality or the stoichiometry of the two photosystems in leaf segments, scrutinizing the approximations in each approach. (1) Chlorophyll fluorescence parameters are convenient to derive, but the information-rich signal suffers from the localized nature of its detection in leaf tissue. (2) The gross O-2 yield per single-turnover flash in CO2-enriched air is a more direct measurement of the functional content, assuming that each functional PS II evolves one O-2 molecule after four flashes. However, the gross O-2 yield per single-turnover flash (multiplied by four) could over-estimate the content of functional PS II if mitochondrial respiration is lower in flash illumination than in darkness. (3) The cumulative delivery of electrons from PS II to P700(+) (oxidized primary donor in PS I) after a flash is added to steady background far-red light is a whole-tissue measurement, such that a single linear correlation with functional PS II applies to leaves of all plant species investigated so far. However, the magnitude obtained in a simple analysis (with the signal normalized to the maximum photo-oxidizable P700 signal), which should equal the ratio of PS II to PS I centers, was too small to match the independently-obtained photosystem stoichiometry. Further, an under-estimation of functional PS II content could occur if some electrons were intercepted before reaching PS I. (4) The electrochromic signal from leaf segments appears to reliably quantify the photosystem stoichiometry, either by progressively photoinactivating PS II or suppressing PS I via photo-oxidation of a known fraction of the P700 with steady far-red light. Together, these approaches have the potential for quantitatively probing PS II in vivo in leaf segments, with prospects for application of the latter two approaches in the field.
  •  
4.
  • Chow, Wah Soon, et al. (författare)
  • The role of inactive photosystem-II-mediated quenching in a last-ditch community defence against high light stress in vivo - Discussion
  • 2002
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : Royal Society. - 0962-8436 .- 1471-2970. ; 357:1426, s. 1449-1450
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Photoinactivation of photosystem II (PSII), the light–induced loss of ability to evolve oxygen, is an inevitable event during normal photosynthesis, exacerbated by saturating light but counteracted by repair via new protein synthesis. The photoinactivation of PSII is dependent on the dosage of light: in the absence of repair, typically one PSII is photoinactivated per 107 photons, although the exact quantum yield of photoinactivation is modulated by a number of factors, and decreases as fewer active PSII targets are available. PSII complexes initially appear to be photoinactivated independently; however, when less than 30% functional PSII complexes remain, they seem to be protected by strongly dissipative PSII reaction centres in several plant species examined so far, a mechanism which we term ‘inactive PSII–mediated quenching‘. This mechanism appears to require a pH gradient across the photosynthetic membrane for its optimal operation. The residual fraction of functional PSII complexes may, in turn, aid in the recovery of photoinactivated PSII complexes when conditions become less severe. This mechanism may be important for the photosynthetic apparatus in extreme environments such as those experienced by over–wintering evergreen plants, desert plants exposed to drought and full sunlight and shade plants in sustained sunlight
  •  
5.
  • Ruban, Alexander V, et al. (författare)
  • Plasticity in the composition of the light harvesting antenna of higher plants preserves structural integrity and biological function.
  • 2006
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 281:21, s. 14981-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Arabidopsis plants in which the major trimeric light harvesting complex (LHCIIb) is eliminated by antisense expression still exhibit the typical macrostructure of photosystem II in the granal membranes. Here the detailed analysis of the composition and the functional state of the light harvesting antennae of both photosystem I and II of these plants is presented. Two new populations of trimers were found, both functional in energy transfer to the PSII reaction center, a homotrimer of CP26 and a heterotrimer of CP26 and Lhcb3. These trimers possess characteristic features thought to be specific for the native LHCIIb trimers they are replacing: the long wavelength form of lutein and at least one extra chlorophyll b, but they were less stable. A new population of loosely bound LHCI was also found, contributing to an increased antenna size for photosystem I, which may in part compensate for the loss of the phosphorylated LHCIIb that can associate with this photosystem. Thus, the loss of LHCIIb has triggered concerted compensatory responses in the composition of antennae of both photosystems. These responses clearly show the importance of LHCIIb in the structure and assembly of the photosynthetic membrane and illustrate the extreme plasticity at the level of the composition of the light harvesting system.
  •  
6.
  • Zavafer, Alonso, et al. (författare)
  • Two Quenchers Formed During Photodamage of Phostosystem II and The Role of One Quencher in Preemptive Photoprotection
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The quenching of chlorophyll fluorescence caused by photodamage of Photosystem II (qI) is a well recognized phenomenon, where the nature and physiological role of which are still debatable. Paradoxically, photodamage to the reaction centre of Photosystem II is supposed to be alleviated by excitation quenching mechanisms which manifest as fluorescence quenchers. Here we investigated the time course of PSII photodamage in vivo and in vitro and that of picosecond time-resolved chlorophyll fluorescence (quencher formation). Two long-lived fluorescence quenching processes during photodamage were observed and were formed at different speeds. The slow-developing quenching process exhibited a time course similar to that of the accumulation of photodamaged PSII, while the fast-developing process took place faster than the light-induced PSII damage. We attribute the slow process to the accumulation of photodamaged PSII and the fast process to an independent quenching mechanism that precedes PSII photodamage and that alleviates the inactivation of the PSII reaction centre.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy