SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Christgau S.) "

Sökning: WFRF:(Christgau S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Forsblad d'Elia, Helena, 1961, et al. (författare)
  • Hormone replacement therapy, calcium and vitamin D3 versus calcium and vitamin D3 alone decreases markers of cartilage and bone metabolism in rheumatoid arthritis: a randomized controlled trial [ISRCTN46523456]
  • 2004
  • Ingår i: Arthritis Res Ther. - : Springer Science and Business Media LLC. - 1478-6362 .- 1465-9905 .- 1478-6354. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to evaluate the effects of hormone replacement therapy (HRT), known to prevent osteoporosis and fractures, on markers of bone and cartilage metabolism. Furthermore, we assessed whether changes in these markers corresponded to alterations in bone mineral density and radiographic joint destructions in postmenopausal women with rheumatoid arthritis. Eighty-eight women were randomized to receive HRT, calcium, and vitamin D3, or calcium and vitamin D3 alone, for 2 years. Bone turnover was studied by analyzing serum levels of C-terminal telopeptide fragments of type I collagen (CTX-I), C-terminal telopeptide of type I collagen (ICTP), bone sialoprotein, and C-terminal propeptide of type I procollagen (PICP) and cartilage turnover by urinary levels of collagen type II C-telopeptide degradation fragments (CTX-II) and cartilage oligomeric matrix protein (COMP) in serum. Treatment with HRT resulted in decrease in CTX-I (P < 0.001), ICTP (P < 0.001), PICP (P < 0.05), COMP (P < 0.01), and CTX-II (P < 0.05) at 2 years. Reductions in CTX-I, ICTP, and PICP were associated with improved bone mineral density. Of the markers tested, CTX-I reflected bone turnover most sensitively; it was reduced by 53 +/- 6% in the patients receiving HRT. Baseline ICTP (P < 0.001), CTX-II (P < 0.01), and COMP (P < 0.05) correlated with the Larsen score. We suggest that biochemical markers of bone and cartilage turnover may provide a useful tool for assessing novel treatment modalities in arthritis, concerning both joint protection and prevention of osteoporosis.
  •  
2.
  •  
3.
  • Wagner, A. M., et al. (författare)
  • Post-translational protein modifications in type 1 diabetes: a role for the repair enzyme protein-L-isoaspartate (D-aspartate) O-methyltransferase?
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 50:3, s. 676-681
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Post-translational modifications, such as isomerisation of native proteins, may create new antigenic epitopes and play a role in the development of the autoimmune response. Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PIMT), encoded by the gene PCMT1, is an enzyme that recognises and repairs isomerised Asn and Asp residues in proteins. The aim of this study was to assess the role of PIMT in the development of type 1 diabetes. Materials and methods Immunohistochemical analysis of 59 normal human tissues was performed with a monoclonal PIMT antibody. CGP3466B, which induces expression of Pcmt1, was tested on MIN6 and INS1 cells, to assess its effect on Pcmt1 mRNA and PIMT levels (RT-PCR and western blot) and apoptosis. Forty-five diabetes-prone BioBreeding (BB) Ottawa Karlsburg (OK) rats were randomised to receive 0, 14 or 500 mu g/kg (denoted as the control, low-dose and high-dose group, respectively) of CGP3466B from week 5 to week 20. Results A high level of PIMT protein was detected in beta cells. CGP3466B induced a two- to threefold increase in Pcmt1 mRNA levels and reduced apoptosis by 10% in MIN6 cells. No significant effect was seen on cytokine-induced apoptosis or PIMT protein levels in INS1 cells. The onset of diabetes in the BB/OK rats was significantly delayed (85.6 +/- 9.0 vs 84.3 +/- 6.8 vs 106.6 +/- 13.5 days, respectively; p < 0.01 for high-dose vs low-dose and control groups), the severity of the disease was reduced (glucose 22.2 +/- 3.2 vs 16.9 +/- 2.6 vs 15.8 +/- 2.7 mmol; p < 0.01 for high- and low-dose groups vs control group) and residual beta cells were more frequently identified (43% vs 71% vs 86%; p < 0.05 for high-dose vs control group) in the treated animals. Conclusions/interpretation The results support a role for post-translational modifications and PIMT in the development of type 1 diabetes in the diabetes-prone BB rat, and perhaps also in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy