SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chrysostomou C) "

Sökning: WFRF:(Chrysostomou C)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Geach, J.E., et al. (författare)
  • The SCUBA-2 Cosmology Legacy Survey: 850 μm maps, catalogues and number counts
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 465:2, s. 1789-1806
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a catalogue of similar to 3000 submillimetre sources detected (>= 3.5 sigma) at 850 mu m over similar to 5 deg(2) surveyed as part of the James Clerk Maxwell Telescope (JCMT) SCUBA-2 Cosmology Legacy Survey (S2CLS). This is the largest survey of its kind at 850 mu m, increasing the sample size of 850 mu m selected submillimetre galaxies by an order of magnitude. The wide 850 mu m survey component of S2CLS covers the extragalactic fields: UKIDSS-UDS, COSMOS, Akari-NEP, Extended Groth Strip, Lockman Hole North, SSA22 and GOODS-North. The average 1s depth of S2CLS is 1.2 mJy beam(-1), approaching the SCUBA-2 850 mu m confusion limit, which we determine to be sigma(c) approximate to 0.8 mJy beam(-1). We measure the 850 mu m number counts, reducing the Poisson errors on the differential counts to approximately 4 per cent at S-850 approximate to 3 mJy. With several independent fields, we investigate field-to-field variance, finding that the number counts on 0.5 degrees-1 degrees scales are generally within 50 per cent of the S2CLS mean for S-850 > 3 mJy, with scatter consistent with the Poisson and estimated cosmic variance uncertainties, although there is a marginal (2 sigma) density enhancement in GOODS-North. The observed counts are in reasonable agreement with recent phenomenological and semi-analytic models, although determining the shape of the faint-end slope (S-850 < 3 mJy) remains a key test. The large solid angle of S2CLS allows us to measure the bright-end counts: at S-850 > 10 mJy there are approximately 10 sources per square degree, and we detect the distinctive up-turn in the number counts indicative of the detection of local sources of 850 mu m emission
  •  
2.
  • Geach, J.E., et al. (författare)
  • The SCUBA-2 Cosmology Legacy Survey: blank-field number counts of 450-mu m-selected galaxies and their contribution to the cosmic infrared background
  • 2013
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 432:1, s. 53-61
  • Tidskriftsartikel (refereegranskat)abstract
    • The first deep blank-field 450 mu m map (1 sigma approximate to 1.3 mJy) from the Submillimetre Common-User Bolometer Array-2 SCUBA-2 Cosmology Legacy Survey (S2CLS), conducted with the James Clerk Maxwell Telescope (JCMT) is presented. Our map covers 140 arcmin(2) of the Cosmological Evolution Survey field, in the footprint of the Hubble Space Telescope (HST) Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. Using 60 submillimetre galaxies detected at >= 3.75s, we evaluate the number counts of 450-mu m-selected galaxies with flux densities S-450 > 5 mJy. The 8 arcsec JCMT beam and high sensitivity of SCUBA-2 now make it possible to directly resolve a larger fraction of the cosmic infrared background (CIB, peaking at. similar to 200 mu m) into the individual galaxies responsible for its emission than has previously been possible at this wavelength. At S450 > 5 mJy, we resolve (7.4 +/- 0.7) x 10(-2) MJy sr(-1) of the CIB at 450 mu m (equivalent to 16 +/- 7 per cent of the absolute brightness measured by the Cosmic Background Explorer at this wavelength) into point sources. A further similar to 40 per cent of the CIB can be recovered through a statistical stack of 24 mu m emitters in this field, indicating that the majority (approximate to 60 per cent) of the CIB at 450 mu m is emitted by galaxies with S450 > 2 mJy. The average redshift of 450 mu m emitters identified with an optical/near-infrared counterpart is estimated to be = 1.3, implying that the galaxies in the sample are in the ultraluminous class (LIR approximate to 1.1 x 1012 L approximate to). If the galaxies contributing to the statistical stack lie at similar redshifts, then the majority of the CIB at 450 mu m is emitted by galaxies in the luminous infrared galaxy (LIRG) class with LIR > 3.6 x 1011 L-circle dot.
  •  
3.
  •  
4.
  • Arzoumanian, Doris, et al. (författare)
  • Dust polarized emission observations of NGC 6334: BISTRO reveals the details of the complex but organized magnetic field structure of the high-mass star-forming hub-filament network
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 647
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Molecular filaments and hubs have received special attention recently thanks to new studies showing their key role in star formation. While the (column) density and velocity structures of both filaments and hubs have been carefully studied, their magnetic field (B-field) properties have yet to be characterized. Consequently, the role of B-fields in the formation and evolution of hub-filament systems is not well constrained. Aims. We aim to understand the role of the B-field and its interplay with turbulence and gravity in the dynamical evolution of the NGC 6334 filament network that harbours cluster-forming hubs and high-mass star formation. Methods. We present new observations of the dust polarized emission at 850 μm toward the 2 pc × 10 pc map of NGC 6334 at a spatial resolution of 0.09 pc obtained with the James Clerk Maxwell Telescope (JCMT) as part of the B-field In STar-forming Region Observations (BISTRO) survey. We study the distribution and dispersion of the polarized intensity (PI), the polarization fraction (PF), and the plane-of-The-sky B-field angle (χB_POS) toward the whole region, along the 10 pc-long ridge and along the sub-filaments connected to the ridge and the hubs. We derived the power spectra of the intensity and χBPOS along the ridge crest and compared them with the results obtained from simulated filaments. Results. The observations span 3 orders of magnitude in Stokes I and PI and 2 orders of magnitude in PF (from 0.2 to 20%). A large scatter in PI and PF is observed for a given value of I. Our analyses show a complex B-field structure when observed over the whole region ( 10 pc); however, at smaller scales (1 pc), χBPOS varies coherently along the crests of the filament network. The observed power spectrum of χBPOS can be well represented with a power law function with a slope of-1.33 ± 0.23, which is 20% shallower than that of I. We find that this result is compatible with the properties of simulated filaments and may indicate the physical processes at play in the formation and evolution of star-forming filaments. Along the sub-filaments, χBPOS rotates frombeing mostly perpendicular or randomly oriented with respect to the crests to mostly parallel as the sub-filaments merge with the ridge and hubs. This variation of the B-field structure along the sub-filaments may be tracing local velocity flows of infalling matter in the ridge and hubs. Our analysis also suggests a variation in the energy balance along the crests of these sub-filaments, from magnetically critical or supercritical at their far ends to magnetically subcritical near the ridge and hubs. We also detect an increase in PF toward the high-column density (NH2 â 1023 cm-2) star cluster-forming hubs. These latter large PF values may be explained by the increase in grain alignment efficiency due to stellar radiation from the newborn stars, combined with an ordered B-field structure. Conclusions. These observational results reveal for the first time the characteristics of the small-scale (down to 0.1 pc) B-field structure of a 10 pc-long hub-filament system. Our analyses show variations in the polarization properties along the sub-filaments that may be tracing the evolution of their physical properties during their interaction with the ridge and hubs. We also detect an impact of feedback from young high-mass stars on the local B-field structure and the polarization properties, which could put constraints on possible models for dust grain alignment and provide important hints as to the interplay between the star formation activity and interstellar B-fields.
  •  
5.
  • Eswaraiah, Chakali, et al. (författare)
  • The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 912:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We have obtained sensitive dust continuum polarization observations at 850 μm in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope as part of the B-fields in STar-forming Region Observations (BISTRO) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution (∼2000 au or ∼0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis-Chandrasekhar-Fermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 38 ± 14, 44 ± 16, and 12 ± 5 μG, respectively. These cores show distinct mean B-field orientations. The B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. The B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field and not well correlated with other axes. In contrast, Miz-8b exhibits a disordered B-field that shows no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux.
  •  
6.
  • Doi, Yasuo, et al. (författare)
  • The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 899:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new observations of the active star formation region NGC 1333 in the Perseus molecular cloud complex from the James Clerk Maxwell Telescope B-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. The BISTRO data cover the entire NGC 1333 complex (∼1.5 pc ? 2 pc) at 0.02 pc resolution and spatially resolve the polarized emission from individual filamentary structures for the first time. The inferred magnetic field structure is complex as a whole, with each individual filament aligned at different position angles relative to the local field orientation. We combine the BISTRO data with low- and high- resolution data derived from Planck and interferometers to study the multiscale magnetic field structure in this region. The magnetic field morphology drastically changes below a scale of ∼1 pc and remains continuous from the scales of filaments (∼0.1 pc) to that of protostellar envelopes (∼0.005 pc or ∼1000 au). Finally, we construct simple models in which we assume that the magnetic field is always perpendicular to the long axis of the filaments. We demonstrate that the observed variation of the relative orientation between the filament axes and the magnetic field angles are well reproduced by this model, taking into account the projection effects of the magnetic field and filaments relative to the plane of the sky. These projection effects may explain the apparent complexity of the magnetic field structure observed at the resolution of BISTRO data toward the filament network.
  •  
7.
  • Tahani, Mehrnoosh, et al. (författare)
  • JCMT BISTRO Observations: Magnetic Field Morphology of Bubbles Associated with NGC 6334
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the Hii regions associated with the NGC 6334 molecular cloud observed in the submillimeter and taken as part of the B-fields In STar-forming Region Observations Survey. In particular, we investigate the polarization patterns and magnetic field morphologies associated with these Hii regions. Through polarization pattern and pressure calculation analyses, several of these bubbles indicate that the gas and magnetic field lines have been pushed away from the bubble, toward an almost tangential (to the bubble) magnetic field morphology. In the densest part of NGC 6334, where the magnetic field morphology is similar to an hourglass, the polarization observations do not exhibit observable impact from Hii regions. We detect two nested radial polarization patterns in a bubble to the south of NGC 6334 that correspond to the previously observed bipolar structure in this bubble. Finally, using the results of this study, we present steps (incorporating computer vision; circular Hough transform) that can be used in future studies to identify bubbles that have physically impacted magnetic field lines.
  •  
8.
  • Thompson, A. M., et al. (författare)
  • MeerGAL: the MeerKAT galactic plane survey
  • 2016
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • Radio surveys of the Milky Way galaxy have transformed our understanding of star formation and stellar evolution. However, due to strong dependence of “survey cost” on frequency most large area surveys have so far been carried out at low frequencies (∼ a few GHz). These surveys select against dense plasma as the free-free turnover frequency scales directly with electron density which means that there are significant biases against the detection of the youngest and densest HII regions, Young Stellar Objects, jets, winds and Planetary Nebulae. Here we describe the MeerKAT Large Project MeerGAL, which aims to address this issue by making the first sensitive high frequency, high resolution multi-epoch survey of the Galactic Plane. Together with its Northern Hemisphere sister project KuGARS (the Ku-band Galactic Reconnaissance Survey), MeerGAL will revolutionise the study of massive star formation and stellar evolution, Galactic structure, and variability.
  •  
9.
  • Caswell, J. L., et al. (författare)
  • The 6-GHz methanol multibeam maser catalogue - I. Galactic Centre region, longitudes 345° to 6°
  • 2010
  • Ingår i: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - 0035-8711. ; 404:2, s. 1029-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • We have conducted a Galactic plane survey of methanol masers at 6668 MHz using a seven-beam receiver on the Parkes telescope. Here we present results from the first part, which provides sensitive unbiased coverage of a large region around the Galactic Centre. Details are given for 183 methanol maser sites in the longitude range 345° through the Galactic Centre to 6°. Within 6° of the Galactic Centre, we found 88 maser sites, of which more than half (48) are new discoveries. The masers are confined to a narrow Galactic latitude range, indicative of many sources at the Galactic Centre distance and beyond, and confined to a thin disc population; there is no high-latitude population that might be ascribed to the Galactic bulge. Within 2° of the Galactic Centre the maser velocities all lie between −60 and +77 km s−1, a range much smaller than the 540 km s−1 range observed in CO. Elsewhere, the maser with highest positive velocity (+107 km s−1) occurs, surprisingly, near longitude 355° and is probably attributable to the Galactic bar. The maser with the most negative velocity (−127 km s−1) is near longitude 346°, within the longitude–velocity locus of the near side of the ‘3-kpc arm’. It has the most extreme velocity of a clear population of masers associated with the near and far sides of the 3-kpc arm. Closer to the Galactic Centre the maser space density is generally low, except within 0.25 kpc of the Galactic Centre itself, the ‘Galactic Centre zone’, where it is 50 times higher, which is hinted at by the longitude distribution, and confirmed by the unusual velocities.
  •  
10.
  • Ching, Tao-Chung, et al. (författare)
  • The JCMT BISTRO-2 Survey: Magnetic Fields of the Massive DR21 Filament
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 941:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 850 mu m dust polarization observations of the massive DR21 filament from the B-fields In STar-forming Region Observations (BISTRO) survey, using the POL-2 polarimeter and the SCUBA-2 camera on the James Clerk Maxwell Telescope. We detect ordered magnetic fields perpendicular to the parsec-scale ridge of the DR21 main filament. In the subfilaments, the magnetic fields are mainly parallel to the filamentary structures and smoothly connect to the magnetic fields of the main filament. We compare the POL-2 and Planck dust polarization observations to study the magnetic field structures of the DR21 filament on 0.1-10 pc scales. The magnetic fields revealed in the Planck data are well-aligned with those of the POL-2 data, indicating a smooth variation of magnetic fields from large to small scales. The plane-of-sky magnetic field strengths derived from angular dispersion functions of dust polarization are 0.6-1.0 mG in the DR21 filament and similar to 0.1 mG in the surrounding ambient gas. The mass-to-flux ratios are found to be magnetically supercritical in the filament and slightly subcritical to nearly critical in the ambient gas. The alignment between column density structures and magnetic fields changes from random alignment in the low-density ambient gas probed by Planck to mostly perpendicular in the high-density main filament probed by James Clerk Maxwell Telescope. The magnetic field structures of the DR21 filament are in agreement with MHD simulations of a strongly magnetized medium, suggesting that magnetic fields play an important role in shaping the DR21 main filament and subfilaments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy