SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chung Hee Suk) "

Sökning: WFRF:(Chung Hee Suk)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sampson, Joshua N., et al. (författare)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
2.
  • Han, Sang Sub, et al. (författare)
  • Wafer-Scale Anion Exchange Conversion of Nonlayered PtS Films to van der Waals Two-Dimensional PtTe2 Layers with Negative Photoresponsiveness
  • 2022
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 34:15, s. 6996-7005
  • Tidskriftsartikel (refereegranskat)abstract
    • This study reports on the controlled vapor-phase anion exchange conversion of three-dimensional (3D) platinum(II) sulfide (PtS) thin films to two-dimensional platinum ditelluride (2D PtTe2) van der Waals (vdW) layers. The low temperature (i.e., 400 ?) thermal tellurization of chemical vapor deposition (CVD)-grown PtS thin films leads to the formation of 2D PtTe2 vdW layers with a modulated crystallographic orientation, i.e., a mixture of horizontally and vertically oriented 2D layers. This chemical conversion enables the tunable electrical transport accompanying semiconducting-to-metallic transition as well as negative photoresponsiveness in the 2D PtTe2 layers. Density functional theory (DFT) calculations verify the thermodynamic principle for the conversion in the frame of free energy landscapes. The present work suggests a new chemical route for controlling the atomic and chemical structures of 2D transition metal dichalcogenides (TMDs) toward their wafer-scale modulation of electrical and opto-electrical properties.
  •  
3.
  • Han, Sang Sub, et al. (författare)
  • Peel-and-Stick Integration of Atomically Thin Nonlayered PtS Semiconductors for Multidimensionally Stretchable Electronic Devices
  • 2022
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 14:17, s. 20268-20279
  • Tidskriftsartikel (refereegranskat)abstract
    • van der Waals (vdW) crystals with unparalleled electromechanical properties have been explored for transformative devices. Currently, the availability of 2D vdW crystals is rather limited in nature as they are only obtained from certain mother crystals with intrinsically possessed layered crystallinity and anisotropic molecular bonding. Recent efforts to transform conventionally non-vdW three-dimensional (3D) crystals into ultrathin 2D-like structures have seen rapid developments to explore device building blocks of unique form factors. Herein, we explore a "peel-and-stick" approach, where a nonlayered 3D platinum sulfide (PtS) crystal, traditionally known as a cooperate mineral material, is transformed into a freestanding 2D-like membrane for electromechanical applications. The ultrathin (???10 nm) 3D PtS films grown on large-area (>cm2) silicon dioxide/silicon (SiO2/Si) wafers are precisely "peeled" inside water retaining desired geometries via a capillary-force-driven surface wettability control. Subsequently, they are "sticked" on strain-engineered patterned substrates presenting prominent semiconducting properties, i.e., p-type transport with an optical band gap of ∼1.24 eV. A variety of mechanically deformable strain-invariant electronic devices have been demonstrated by this peel-and-stick method, including biaxially stretchable photodetectors and respiratory sensing face masks. This study offers new opportunities of 2D-like nonlayered semiconducting crystals for emerging mechanically reconfigurable and stretchable device technologies.
  •  
4.
  • Han, Sang Sub, et al. (författare)
  • Reversible Transition of Semiconducting PtSe2 and Metallic PtTe2 for Scalable All-2D Edge-Contacted FETs
  • 2024
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 24:6, s. 1891-1900
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are highly promising as field-effect transistor (FET) channels in the atomic-scale limit. However, accomplishing this superiority in scaled-up FETs remains challenging due to their van der Waals (vdW) bonding nature with respect to conventional metal electrodes. Herein, we report a scalable approach to fabricate centimeter-scale all-2D FET arrays of platinum diselenide (PtSe2) with in-plane platinum ditelluride (PtTe2) edge contacts, mitigating the aforementioned challenges. We realized a reversible transition between semiconducting PtSe2 and metallic PtTe2 via a low-temperature anion exchange reaction compatible with the back-end-of-line (BEOL) processes. All-2D PtSe2 FETs seamlessly edge-contacted with transited metallic PtTe2 exhibited significant performance improvements compared to those with surface-contacted gold electrodes, e.g., an increase of carrier mobility and on/off ratio by over an order of magnitude, achieving a maximum hole mobility of similar to 50.30 cm(2) V-1 s(-1) at room temperature. This study opens up new opportunities toward atomically thin 2D-TMD-based circuitries with extraordinary functionalities.
  •  
5.
  • Shawkat, Mashiyat Sumaiya, et al. (författare)
  • Large-area 2D PtTe2/silicon vertical-junction devices with ultrafast and high-sensitivity photodetection and photovoltaic enhancement by integrating water droplets
  • 2020
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 12:45, s. 23116-23124
  • Tidskriftsartikel (refereegranskat)abstract
    • 2D PtTe2 layers, a relatively new class of 2D crystals, have unique band structure and remarkably high electrical conductivity promising for emergent opto-electronics. This intrinsic superiority can be further leveraged toward practical device applications by merging them with mature 3D semiconductors, which has remained largely unexplored. Herein, we explored 2D/3D heterojunction devices by directly growing large-area (>cm2) 2D PtTe2 layers on Si wafers using a low-temperature CVD method and unveiled their superior opto-electrical characteristics. The devices exhibited excellent Schottky transport characteristics essential for high-performance photovoltaics and photodetection, i.e., well-balanced combination of high photodetectivity (>1013 Jones), small photo-responsiveness time (∼1 μs), high current rectification ratio (>105), and water super-hydrophobicity driven photovoltaic improvement (>300%). These performances were identified to be superior to those of previously explored 2D/3D or 2D layer-based devices with much smaller junction areas, and their underlying principles were confirmed by DFT calculations.
  •  
6.
  • Wang, Mengjing, et al. (författare)
  • Wafer-Scale Growth of 2D PtTe2 with Layer Orientation Tunable High Electrical Conductivity and Superior Hydrophobicity
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:9, s. 10839-10851
  • Tidskriftsartikel (refereegranskat)abstract
    • Platinum ditelluride (PtTe2) is an emerging semimetallic two-dimensional (2D) transition-metal dichalcogenide (TMDC) crystal with intriguing band structures and unusual topological properties. Despite much devoted efforts, scalable and controllable synthesis of large-area 2D PtTe2 with well-defined layer orientation has not been established, leaving its projected structure–property relationship largely unclarified. Herein, we report a scalable low-temperature growth of 2D PtTe2 layers on an area greater than a few square centimeters by reacting Pt thin films of controlled thickness with vaporized tellurium at 400 °C. We systematically investigated their thickness-dependent 2D layer orientation as well as its correlated electrical conductivity and surface property. We unveil that 2D PtTe2 layers undergo three distinct growth mode transitions, i.e., horizontally aligned holey layers, continuous layer-by-layer lateral growth, and horizontal-to-vertical layer transition. This growth transition is a consequence of competing thermodynamic and kinetic factors dictated by accumulating internal strain, analogous to the transition of Frank–van der Merwe (FM) to Stranski–Krastanov (SK) growth in epitaxial thin-film models. The exclusive role of the strain on dictating 2D layer orientation has been quantitatively verified by the transmission electron microscopy (TEM) strain mapping analysis. These centimeter-scale 2D PtTe2 layers exhibit layer orientation tunable metallic transports yielding the highest value of ∼1.7 × 106 S/m at a certain critical thickness, supported by a combined verification of density functional theory (DFT) and electrical measurements. Moreover, they show intrinsically high hydrophobicity manifested by the water contact angle (WCA) value up to ∼117°, which is the highest among all reported 2D TMDCs of comparable dimensions and geometries. Accordingly, this study confirms the high material quality of these emerging large-area 2D PtTe2 layers, projecting vast opportunities employing their tunable layer morphology and semimetallic properties from investigations of novel quantum phenomena to applications in electrocatalysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (6)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Sattar, Shahid (5)
Larsson, J. Andreas (2)
Glimelius, Bengt (1)
Smedby, Karin E. (1)
Chang-Claude, Jenny (1)
Boutron-Ruault, Mari ... (1)
visa fler...
Boeing, Heiner (1)
Masala, Giovanna (1)
Krogh, Vittorio (1)
Chirlaque, Maria-Dol ... (1)
Khaw, Kay-Tee (1)
Riboli, Elio (1)
Liu, Li (1)
Mannisto, Satu (1)
Adami, Hans Olov (1)
Melbye, Mads (1)
Weiderpass, Elisabet ... (1)
Haiman, Christopher ... (1)
Berndt, Sonja I (1)
Chanock, Stephen J (1)
Gapstur, Susan M (1)
Stevens, Victoria L (1)
Albanes, Demetrius (1)
Cancel-Tassin, Geral ... (1)
Travis, Ruth C (1)
Giles, Graham G (1)
Kogevinas, Manolis (1)
Gago Dominguez, Manu ... (1)
Johansen, Christoffe ... (1)
Feychting, Maria (1)
Sund, Malin (1)
Andersson, Ulrika (1)
Ahlbom, Anders (1)
Gallinger, Steven (1)
Visvanathan, Kala (1)
White, Emily (1)
Peters, Ulrike (1)
Severi, Gianluca (1)
Huerta, José Maria (1)
Palli, Domenico (1)
Jenab, Mazda (1)
Vineis, Paolo (1)
North, Kari E. (1)
Bueno-de-Mesquita, H ... (1)
Trichopoulos, Dimitr ... (1)
Canzian, Federico (1)
Tjonneland, Anne (1)
Boffetta, Paolo (1)
Peeters, Petra H. M. (1)
Hallmans, Göran (1)
visa färre...
Lärosäte
Linnéuniversitetet (5)
Luleå tekniska universitet (3)
Umeå universitet (1)
Uppsala universitet (1)
Karolinska Institutet (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Teknik (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy