SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Church Deanna M.) "

Sökning: WFRF:(Church Deanna M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
2.
  • Miller, David T., et al. (författare)
  • Consensus Statement : Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies
  • 2010
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 86:5, s. 749-764
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype (similar to 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.
  •  
3.
  • Church, Deanna M, et al. (författare)
  • Lineage-specific biology revealed by a finished genome assembly of the mouse
  • 2009
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 7:5, s. e1000112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.
  •  
4.
  •  
5.
  • Solomon, Marcello B., et al. (författare)
  • Perspectives on metal-organic frameworks with intrinsic electrocatalytic activity
  • 2017
  • Ingår i: CrystEngComm. - : Royal Society of Chemistry (RSC). - 1466-8033. ; 19:29, s. 4049-4065
  • Forskningsöversikt (refereegranskat)abstract
    • This highlight article focuses on the rapidly emerging area of electrocatalytic metal-organic frameworks (MOFs) with a particular emphasis on those systems displaying intrinsic activity. Three electrocatalytic conversion processes are discussed, including CO2 reduction, the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), as well as a selection of other relevant examples. The scope of our discussion encompasses aspects of MOF structure that are key to their function, performance characteristics such as stability and selectivity, together with methods for interfacing MOFs with surfaces. Key challenges that have emerged are highlighted in addition to opportunities that are relevant to the field in the design of more stable, selective and robust electrocatalysts for a range of industrial processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy