SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cigan Phil) "

Sökning: WFRF:(Cigan Phil)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alp, Dennis, et al. (författare)
  • The 30 Year Search for the Compact Object in SN 1987A
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 864:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite more than 30 years of searching, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy (0.1 x 10(-26) erg s(-1) cm(-2) Hz(-1)) at 213 GHz, 1 L-circle dot (6 x 10(-29) erg s(-1) cm(-2) Hz(-1)) in the optical if our line of sight is free of ejecta dust, and 10(36) erg s(-1) (2 x 10(-30) erg s(-1) cm(-2) Hz(-1) ) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a more realistic ejecta absorption model based on three-dimensional neutrino-driven SN explosion models. The allowed bolometric luminosity of the compact object is 22 L-circle dot if our line of sight is free of ejecta dust, or 138L(circle dot) if dust-obscured. Depending on assumptions, these values limit the effective temperature of a neutron star (NS) to <4-8 MK and do not exclude models, which typically are in the range 3-4 MK. For the simplest accretion model, the accretion rate for an efficiency 77 is limited to <10(-11) eta(-1) M-circle dot yr(-1), which excludes most predictions. For pulsar activity modeled by a rotating magnetic dipole in vacuum, the limit on the magnetic field strength (B) for a given spin period (P) is B less than or similar to 10(14) P-2 G s(-2), which firmly excludes pulsars comparable to the Crab. By combining information about radiation reprocessing and geometry, we infer that the compact object is a dust-obscured thermally emitting NS, which may appear as a region of higher-temperature ejecta dust emission.
  •  
2.
  • Arendt, Richard G., et al. (författare)
  • JWST NIRCam Observations of SN 1987A : Spitzer Comparison and Spectral Decomposition
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 959:2
  • Tidskriftsartikel (refereegranskat)abstract
    • JWST Near Infrared Camera (NIRCam) observations at 1.5–4.5 μm have provided broadband and narrowband imaging of the evolving remnant of SN 1987A with unparalleled sensitivity and spatial resolution. Comparing with previous marginally spatially resolved Spitzer Infrared Array Camera (IRAC) observations from 2004 to 2019 confirms that the emission arises from the circumstellar equatorial ring (ER), and the current brightness at 3.6 and 4.5 μm was accurately predicted by extrapolation of the declining brightness tracked by IRAC. Despite the regular light curve, the NIRCam observations clearly reveal that much of this emission is from a newly developing outer portion of the ER. Spots in the outer ER tend to lie at position angles in between the well-known ER hotspots. We show that the bulk of the emission in the field can be represented by five standard spectral energy distributions, each with a distinct origin and spatial distribution. This spectral decomposition provides a powerful technique for distinguishing overlapping emission from the circumstellar medium and the supernova ejecta, excited by the forward and reverse shocks, respectively.
  •  
3.
  • Cigan, Phil, et al. (författare)
  • High Angular Resolution ALMA Images of Dust and Molecules in the SN 1987A Ejecta
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 886:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high angular resolution (similar to 80 mas) ALMA continuum images of the SN.1987A system, together with CO J = 2 -> 1, J = 6 -> 5, and SiO J = 5 -> 4 to J = 7 -> 6 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in H alpha images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO J = 6 -> 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In these regions, carbonaceous dust grains might have formed after dissociation of CO. The dust grains would have cooled by radiation, and subsequent collisions of grains with gas would also cool the gas, suppressing the CO J = 6 -> 5 intensity. The data show a dust peak spatially coincident with the molecular hole seen in previous ALMA CO J = 2 -> 1 and SiO J = 5 -> 4 images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared-millimeter spectral energy distribution give ejecta dust temperatures of 18-23 K. We revise the ejecta dust mass to M-dust = 0.2-0.4 M-circle dot for carbon or silicate grains, or a maximum of <0.7 M-circle dot for a mixture of grain species, using the predicted nucleosynthesis yields as an upper limit.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy