SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Claesson Elin 1989) "

Sökning: WFRF:(Claesson Elin 1989)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dods, Robert, 1989, et al. (författare)
  • From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography.
  • 2017
  • Ingår i: Structure. - : Elsevier BV. - 1878-4186 .- 0969-2126. ; 25:9, s. 1461-1468
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RCvir). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RCvir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography.
  •  
2.
  • Dods, Robert, 1989, et al. (författare)
  • Ultrafast structural changes within a photosynthetic reaction centre.
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 589:7841, s. 310-314
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.
  •  
3.
  • Edlund, Petra, et al. (författare)
  • The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 angstrom resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 angstrom resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.
  •  
4.
  • Henry, Léocadie, et al. (författare)
  • Real-time tracking of protein unfolding with time-resolved x-ray solution scattering
  • 2020
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 7:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The correct folding of proteins is of paramount importance for their function, and protein misfolding is believed to be the primary cause of a wide range of diseases. Protein folding has been investigated with time-averaged methods and time-resolved spectroscopy, but observing the structural dynamics of the unfolding process in real-time is challenging. Here, we demonstrate an approach to directly reveal the structural changes in the unfolding reaction. We use nano- to millisecond time-resolved x-ray solution scattering to probe the unfolding of apomyoglobin. The unfolding reaction was triggered using a temperature jump, which was induced by a nanosecond laser pulse. We demonstrate a new strategy to interpret time-resolved x-ray solution scattering data, which evaluates ensembles of structures obtained from molecular dynamics simulations. We find that apomyoglobin passes three states when unfolding, which we characterize as native, molten globule, and unfolded. The molten globule dominates the population under the conditions investigated herein, whereas native and unfolded structures primarily contribute before the laser jump and 30 mu s after it, respectively. The molten globule retains much of the native structure but shows a dynamic pattern of inter-residue contacts. Our study demonstrates a new strategy to directly observe structural changes over the cause of the unfolding reaction, providing time- and spatially resolved atomic details of the folding mechanism of globular proteins. (C) 2020 Author(s).
  •  
5.
  •  
6.
  • Wahlgren, Weixiao Yuan, 1970, et al. (författare)
  • Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site.
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95Å resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na+ gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na+ ions. One Na+ binds to the conserved Na2 site, while the second Na+ binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na+ sites regulate N-acetylneuraminic acid transport.
  •  
7.
  • Carrillo, M., et al. (författare)
  • High-resolution crystal structures of transient intermediates in the phytochrome photocycle
  • 2021
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126. ; 29:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes are red/far-red light photoreceptors in bacteria to plants, which elicit a variety of important physiological responses. They display a reversible photocycle between the resting Pr state and the light-activated Pfr state. Light signals are transduced as structural change through the entire protein to modulate its activity. It is unknown how the Pr-to-Pfr interconversion occurs, as the structure of intermediates remains notoriously elusive. Here, we present short-lived crystal structures of the photosensory core modules of the bacteriophytochrome from myxobacterium Stigmatella aurantiaca captured by an X-ray free electron laser 5 ns and 33 ms after light illumination of the Pr state. We observe large structural displacements of the covalently bound bilin chromophore, which trigger a bifurcated signaling pathway that extends through the entire protein. The snapshots show with atomic precision how the signal progresses from the chromophore, explaining how plants, bacteria, and fungi sense red light.
  •  
8.
  • Cellini, Andrea, 1991, et al. (författare)
  • The three-dimensional structure of Drosophila melanogaster (6-4) photolyase at room temperature
  • 2021
  • Ingår i: Acta Crystallographica Section D-Structural Biology. - : International Union of Crystallography (IUCr). - 2059-7983. ; 77, s. 1001-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • (6-4) photolyases are flavoproteins that belong to the photolyase/cryptochrome family. Their function is to repair DNA lesions using visible light. Here, crystal structures of Drosophila melanogaster (6-4) photolyase [Dm(6-4)photolyase] at room and cryogenic temperatures are reported. The room-temperature structure was solved to 2.27 angstrom resolution and was obtained by serial femtosecond crystallography (SFX) using an X-ray free-electron laser. The crystallization and preparation conditions are also reported. The cryogenic structure was solved to 1.79 angstrom resolution using conventional X-ray crystallography. The structures agree with each other, indicating that the structural information obtained from crystallography at cryogenic temperature also applies at room temperature. Furthermore, UV-Vis absorption spectroscopy confirms that Dm(6-4)photolyase is photoactive in the crystals, giving a green light to time-resolved SFX studies on the protein, which can reveal the structural mechanism of the photoactivated protein in DNA repair.
  •  
9.
  • Claesson, Elin, 1989 (författare)
  • The Primary Structural Photo-Response of a Bacterial Phytochrome Probed by Serial Femtosecond Crystallography
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Species across all kingdoms of life rely on the ability to sense different light conditions. Some organisms convert light into chemical energy via the reactions involved in photosynthesis, whereas others use it to trigger cellular signals. The group of proteins that are responsible for light perception are called photoreceptor proteins. Phytochromes are photoreceptors that control diverse physiological responses in plants, algae, fungi and bacteria, through their ability to sense red and far-red light. These proteins absorb light through a bilin cofactor located in the photosensory part of the protein. Changes in the chromophore induce structural rearrangement in the protein and thereby alter its biological activity. Several structural details of the signalling mechanism remain undetermined and require further investigation. This thesis focuses on revealing the early structural changes upon photoactivation in the bacterial phytochrome from Deinococcus radiodurans (DrBphP). Serial femtosecond crystallography (SFX) has been the main method used for our investigations. The papers presented here describe the crystallization strategies that were used preceding data collection at X-ray free electron lasers (XFELs). Structures of the chromophore-binding domain (PAS-GAF) from DrBphP were solved in the resting state, and at 1 ps following light-activation. Additional time-resolved diffraction data were collected at 0-2.7 ps, probing the earliest structural changes after photon absorption. The findings reveal that the captured photoresponse involves extended structural rearrangements including both the chromophore and the protein. Two conserved tyrosine residues are proposed to be involved in the earliest signalling on femtosecond time scale. Subsequently, a collective response of the chromophore and the surrounding binding pocket evolve on an early picosecond time scale. The discoveries have provided insight into the primary molecular mechanism that phytochromes use to convert light signals into structural changes. Such research not only deepens our understanding of how all vegetation on earth function, but could also have applications in agriculture where growth patterns in various crops could be made more effective.
  •  
10.
  • Claesson, Elin, 1989, et al. (författare)
  • The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser
  • 2020
  • Ingår i: eLife. - 2050-084X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy