SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Clarke John 1942) "

Sökning: WFRF:(Clarke John 1942)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johnson, Toby, et al. (författare)
  • Blood Pressure Loci Identified with a Gene-Centric Array.
  • 2011
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 1537-6605 .- 0002-9297. ; 89:6, s. 688-700
  • Tidskriftsartikel (refereegranskat)abstract
    • Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56× 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56× 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.
  •  
2.
  • Bender, A. N., et al. (författare)
  • Galaxy cluster scaling relations measured with APEX-SZ
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 460:4, s. 3432-3446
  • Tidskriftsartikel (refereegranskat)abstract
    • We present thermal Sunyaev-Zel'dovich effect (SZE) measurements for 42 galaxy clusters observed at 150 GHz with the APEX-SZ experiment. For each cluster, we model the pressure profile and calculate the integrated Comptonization Y to estimate the total thermal energy of the intraclustermedium (ICM). We compare the measured Y values to X-ray observables of the ICM from the literature (cluster gas mass M-gas, temperature T-X, and Y-X = MgasTX) that relate to total cluster mass. We measure power-law scaling relations, including an intrinsic scatter, between the SZE and X-ray observables for three subsamples within the set of 42 clusters that have uniform X-ray analysis in the literature. We observe that differences between these X-ray analyses introduce significant variance into the measured scaling relations, particularly affecting the normalization. For all three subsamples, we find results consistent with a selfsimilarmodel of cluster evolution dominated by gravitational effects. Comparing to predictions from numerical simulations, these scaling relations prefer models that include cooling and feedback in the ICM. Lastly, we measure an intrinsic scatter of similar to 28 per cent in the Y - Y-X scaling relation for all three subsamples.
  •  
3.
  • Gustafsson, Martin, 1979, et al. (författare)
  • Thermal properties of charge noise sources
  • 2013
  • Ingår i: Physical Review B - Condensed Matter and Materials Physics. - 2469-9950 .- 2469-9969. ; 88:24, s. Art. no. 245410-
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the temperature and bias dependence of single-electron transistors (SETs) in a dilutionrefrigerator show that charge noise increases linearly with refrigerator temperature above a voltage-dependentthreshold temperature, and that its low-temperature saturation is due to SET self-heating. We show further thatthe two-level fluctuators responsible for charge noise are in strong thermal contact with the electrons in the SET,which can be at a much higher temperature than the substrate. We suggest that the noise is caused by electronstunneling between the SET metal and nearby potential wells.
  •  
4.
  • Gustavsson, S., et al. (författare)
  • Suppressing relaxation in superconducting qubits by quasiparticle pumping
  • 2016
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 354:6319, s. 1573-1577
  • Tidskriftsartikel (refereegranskat)abstract
    • Copyright 2016 by the American Association for the Advancement of Science; all rights reserved.Dynamical error suppression techniques are commonly used to improve coherence in quantum systems.They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation.We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70%reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability.
  •  
5.
  • Körber, R., et al. (författare)
  • SQUIDs in biomagnetism: A roadmap towards improved healthcare
  • 2016
  • Ingår i: Superconductors Science and Technology. - : IOP Publishing. - 0953-2048 .- 1361-6668. ; 29:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, the demand for improved health care delivery while managing escalating costs is a major challenge. Measuring the biomagnetic fields that emanate from the human brain already impacts the treatment of epilepsy, brain tumours and other brain disorders. This roadmap explores how superconducting technologies are poised to impact health care. Biomagnetism is the study of magnetic fields of biological origin. Biomagnetic fields are typically very weak, often in the femtotesla range, making their measurement challenging. The earliest in vivo human measurements were made with room-temperature coils. In 1963, Baule and McFee (1963 Am. Heart J. 55 95-6) reported the magnetic field produced by electric currents in the heart ('magnetocardiography'), and in 1968, Cohen (1968 Science 161 784-6) described the magnetic field generated by alpha-rhythm currents in the brain ('magnetoencephalography'). Subsequently, in 1970, Cohen et al (1970 Appl. Phys. Lett. 16 278-80) reported the recording of a magnetocardiogram using a Superconducting QUantum Interference Device (SQUID). Just two years later, in 1972, Cohen (1972 Science 175 664-6) described the use of a SQUID in magnetoencephalography. These last two papers set the scene for applications of SQUIDs in biomagnetism, the subject of this roadmap. The SQUID is a combination of two fundamental properties of superconductors. The first is flux quantization - the fact that the magnetic flux Φ in a closed superconducting loop is quantized in units of the magnetic flux quantum, Φ0 ≡ h/2e, ≈ 2.07 × 10-15 Tm2 (Deaver and Fairbank 1961 Phys. Rev. Lett. 7 43-6, Doll R and Nabauer M 1961 Phys. Rev. Lett. 7 51-2). Here, h is the Planck constant and e the elementary charge. The second property is the Josephson effect, predicted in 1962 by Josephson (1962 Phys. Lett. 1 251-3) and observed by Anderson and Rowell (1963 Phys. Rev. Lett. 10 230-2) in 1963. The Josephson junction consists of two weakly coupled superconductors separated by a tunnel barrier or other weak link. A tiny electric current is able to flow between the superconductors as a supercurrent, without developing a voltage across them. At currents above the 'critical current' (maximum supercurrent), however, a voltage is developed. In 1964, Jaklevic et al (1964 Phys. Rev. Lett. 12 159-60) observed quantum interference between two Josephson junctions connected in series on a superconducting loop, giving birth to the dc SQUID. The essential property of the SQUID is that a steady increase in the magnetic flux threading the loop causes the critical current to oscillate with a period of one flux quantum. In today's SQUIDs, using conventional semiconductor readout electronics, one can typically detect a change in Φ corresponding to 10-6 Φ0 in one second. Although early practical SQUIDs were usually made from bulk superconductors, for example, niobium or Pb-Sn solder blobs, today's devices are invariably made from thin superconducting films patterned with photolithography or even electron lithography. An extensive description of SQUIDs and their applications can be found in the SQUID Handbooks (Clarke and Braginski 2004 Fundamentals and Technology of SQUIDs and SQUID Systems vol I (Weinheim, Germany: Wiley-VCH), Clarke and Braginski 2006 Applications of SQUIDs and SQUID Systems vol II (Weinheim, Germany: Wiley-VCH)). The roadmap begins (chapter 1) with a brief review of the state-of-the-art of SQUID-based magnetometers and gradiometers for biomagnetic measurements. The magnetic field noise referred to the pick-up loop is typically a few fT Hz-1/2, often limited by noise in the metallized thermal insulation of the dewar rather than by intrinsic SQUID noise. The authors describe a pathway to achieve an intrinsic magnetic field noise as low as 0.1 fT Hz-1/2, approximately the Nyquist noise of the human body. They also descibe a technology to defeat dewar noise. Chapter 2 reviews the neuroscientific and clinical use of magnetoencephalography (MEG), by far the most widespread application of biomagnetism with systems containing ty ically 300 sensors cooled to liquid-helium temperature, 4.2 K. Two important clinical applications are presurgical mapping of focal epilepsy and of eloquent cortex in brain-tumor patients. Reducing the sensor-to-brain separation and the system noise level would both improve spatial resolution. The very recent commercial innovation that replaces the need for frequent manual transfer of liquid helium with an automated system that collects and liquefies the gas and transfers the liquid to the dewar will make MEG systems more accessible. A highly promising means of placing the sensors substantially closer to the scalp for MEG is to use high-transition-temperature (high-T c) SQUID sensors and flux transformers (chapter 3). Operation of these devices at liquid-nitrogen temperature, 77 K, enables one to minimize or even omit metallic thermal insulation between the sensors and the dewar. Noise levels of a few fT Hz-1/2 have already been achieved, and lower values are likely. The dewars can be made relatively flexible, and thus able to be placed close to the skull irrespective of the size of the head, potentially providing higher spatial resolution than liquid-helium based systems. The successful realization of a commercial high-T c MEG system would have a major commercial impact. Chapter 4 introduces the concept of SQUID-based ultra-low-field magnetic resonance imaging (ULF MRI) operating at typically several kHz, some four orders of magnitude lower than conventional, clinical MRI machines. Potential advantages of ULF MRI include higher image contrast than for conventional MRI, enabling methodologies not currently available. Examples include screening for cancer without a contrast agent, imaging traumatic brain injury (TBI) and degenerative diseases such as Alzheimer's, and determining the elapsed time since a stroke. The major current problem with ULF MRI is that its signal-to-noise ratio (SNR) is low compared with high-field MRI. Realistic solutions to this problem are proposed, including implementing sensors with a noise level of 0.1 fT Hz-1/2. A logical and exciting prospect (chapter 5) is to combine MEG and ULF MRI into a single system in which both signal sources are detected with the same array of SQUIDs. A prototype system is described. The combination of MEG and ULF MRI allows one to obtain structural images of the head concurrently with the recording of brain activity. Since all MEG images require an MRI to determine source locations underlying the MEG signal, the combined modality would give a precise registration of the two images; the combination of MEG with high-field MRI can produce registration errors as large as 5 mm. The use of multiple sensors for ULF MRI increases both the SNR and the field of view. Chapter 6 describes another potentially far-reaching application of ULF MRI, namely neuronal current imaging (NCI) of the brain. Currently available neuronal imaging techniques include MEG, which is fast but has relatively poor spatial resolution, perhaps 10 mm, and functional MRI (fMRI) which has a millimeter resolution but is slow, on the order of seconds, and furthermore does not directly measure neuronal signals. NCI combines the ability of direct measurement of MEG with the spatial precision of MRI. In essence, the magnetic fields generated by neural currents shift the frequency of the magnetic resonance signal at a location that is imaged by the three-dimensional magnetic field gradients that form the basis of MRI. The currently achieved sensitivity of NCI is not quite sufficient to realize its goal, but it is close. The realization of NCI would represent a revolution in functional brain imaging. Improved techniques for immunoassay are always being sought, and chapter 7 introduces an entirely new topic, magnetic nanoparticles for immunoassay. These particles are bio-funtionalized, for example with a specific antibody which binds to its corresponding antigen, if it is present. Any resulting changes in the properties of the nanoparticles are detected with a SQUID. For liquid-phase detection, there are three ba ic methods: AC susceptibility, magnetic relaxation and remanence measurement. These methods, which have been successfully implemented for both in vivo and ex vivo applications, are highly sensitive and, although further development is required, it appears highly likely that at least some of them will be commercialized. © 2016 IOP Publishing Ltd.
  •  
6.
  •  
7.
  • Pourkabirian, Arsalan, 1983, et al. (författare)
  • Nonequilibrium probing of two-level charge fluctuators using the step response of a single-electron transistor
  • 2014
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 113:25, s. 256801-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a new method to study two-level fluctuators (TLFs) by measuring the offset charge induced after applying a sudden step voltage to the gate electrode of a single-electron transistor. The offset charge is measured for more than 20 h for samples made on three different substrates. We find that the offset charge drift follows a logarithmic increase over 4 orders of magnitude in time and that the logarithmic slope increases linearly with the step voltage. The charge drift is independent of temperature, ruling out thermally activated TLFs and demonstrating that the charge fluctuations involve tunneling. These observations are in agreement with expectations for an ensemble of TLFs driven out of equilibrium. From our model, we extract the density of TLFs assuming either a volume density or a surface density.
  •  
8.
  • Schwan, D., et al. (författare)
  • APEX-SZ: The Atacama Pathfinder EXperiment Sunyaev-Zel'dovich Instrument
  • 2012
  • Ingår i: The Messenger. ; 147, s. 7-12
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The APEX–SZ instrument was a millimetre-wave (150 GHz) cryogenic receiverfor the APEX telescope designedto observe galaxy clusters via theSunyaev–Zel’dovich Effect (SZE). Thereceiver contained a focal plane of280 superconducting transition-edgesensor bolometers equipped with afrequency-domain-multiplexed readoutsystem, and it played a key role in theintroduction of these new, robust, andscalable technologies. With 1-arcminuteresolution, the instrument had a higherinstantaneous sensitivity and covered alarger field of view (22 arcminutes) thanearlier generations of SZE instruments.During its period of operation from 2007to 2010, APEX–SZ was used to imageover 40 clusters and map fields overlappingwith external datasets. This paperbriefly describes the instrument anddata reduction procedure and presentsa cluster image gallery, as well as resultsfor the Bullet cluster, Abell 2204, Abell2163, and a power spectrum analysis inthe XMM-LSS field.
  •  
9.
  • Schwan, D., et al. (författare)
  • Invited Article: Millimeter-wave bolometer array receiver for the Atacama pathfinder experiment Sunyaev-Zel'dovich (APEX-SZ) instrument
  • 2011
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 82:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atacama pathfinder experiment Sunyaev-Zel'dovich (APEX-SZ) instrument is a millimeter-wave cryogenic receiver designed to observe galaxy clusters via the Sunyaev-Zel'dovich effect from the 12 m APEX telescope on the Atacama plateau in Chile. The receiver contains a focal plane of 280 superconducting transition-edge sensor (TES) bolometers instrumented with a frequency-domain multiplexed readout system. The bolometers are cooled to 280 mK via a three-stage helium sorption refrigerator and a mechanical pulse-tube cooler. Three warm mirrors, two 4 K lenses, and a horn array couple the TES bolometers to the telescope. APEX-SZ observes in a single frequency band at 150 GHz with 1' angular resolution and a 22' field-of-view, all well suited for cluster mapping. The APEX-SZ receiver has played a key role in the introduction of several new technologies including TES bolometers, the frequency-domain multiplexed readout, and the use of a pulse-tube cooler with bolometers. As a result of these new technologies, the instrument has a higher instantaneous sensitivity and covers a larger field-of-view than earlier generations of Sunyaev-Zel'dovich instruments. The TES bolometers have a median sensitivity of 890 mu K(CMB)root s (NEy of 3.5 x 10(-4) root s). We have also demonstrated upgraded detectors with improved sensitivity of 530 mu K(CMB) root s (NEy of 2.2 x 10(-4) root s). Since its commissioning in April 2007, APEX-SZ has been used to map 48 clusters. We describe the design of the receiver and its performance when installed on the APEX telescope.
  •  
10.
  • Zevenhoven, Koos C J, et al. (författare)
  • Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents
  • 2014
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 115:10, s. 12-
  • Tidskriftsartikel (refereegranskat)abstract
    • Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures. (C) 2014 AIP Publishing LLC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy