SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Clein Joy) "

Sökning: WFRF:(Clein Joy)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • McGuire, A. David, et al. (författare)
  • Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 30:7, s. 1015-1037
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8x10(3)km(2)yr(-1)). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954TgCyr(-1) between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982-2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.
  •  
2.
  • Sitch, Stephen, et al. (författare)
  • Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling
  • 2007
  • Ingår i: Ecological Applications. - : John Wiley & Sons. - 1051-0761 .- 1939-5582. ; 17:1, s. 213-234
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reviews the current status of using remote sensing and process-based modeling approaches to assess the contemporary and future circumpolar carbon balance of Arctic tundra, including the exchange of both carbon dioxide and methane with the atmosphere. Analyses based on remote sensing approaches that use a 20-year data record of satellite data indicate that tundra is greening in the Arctic, suggesting an increase in photosynthetic activity and net primary production. Modeling studies generally simulate a small net carbon sink for the distribution of Arctic tundra, a result that is within the uncertainty range of field-based estimates of net carbon exchange. Applications of processbased approaches for scenarios of future climate change generally indicate net carbon sequestration in Arctic tundra as enhanced vegetation production exceeds simulated increases in decomposition. However, methane emissions are likely to increase dramatically, in response to rising soil temperatures, over the next century. Key uncertainties in the response of Arctic ecosystems to climate change include uncertainties in future fire regimes and uncertainties relating to changes in the soil environment. These include the response of soil decomposition and respiration to warming and deepening of the soil active layer, uncertainties in precipitation and potential soil drying, and distribution of wetlands. While there are numerous uncertainties in the projections of process-based models, they generally indicate that Arctic tundra will be a small sink for carbon over the next century and that methane emissions will increase considerably, which implies that exchange of greenhouse gases between the atmosphere and Arctic tundra ecosystems is likely to contribute to climate warming.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy