SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Coşkun Abdurrahman) "

Sökning: WFRF:(Coşkun Abdurrahman)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brum, Wagner S., et al. (författare)
  • Biological variation estimates of Alzheimer's disease plasma biomarkers in healthy individuals
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260 .- 1552-5279. ; 20:2, s. 1284-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aβ42, Aβ40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI) and between-subject (CVG) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG. Aβ42/Aβ40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aβ42/Aβ40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.
  •  
2.
  • Coskun, Abdurrahman, et al. (författare)
  • Measurement uncertainty for practical use
  • 2022
  • Ingår i: Clinica Chimica Acta. - : ELSEVIER. - 0009-8981 .- 1873-3492. ; 531, s. 352-360
  • Tidskriftsartikel (refereegranskat)abstract
    • Uncertainty is an inseparable part of all kinds of measurements performed in clinical laboratories. Accreditation standards including the ISO/IEC 17025:2017 and ISO 15189:2012 require that laboratories have routines for calculating the measurement uncertainty of reported results. Various guidelines such as CLSI EP29, Nordest 537, and ISO 20914:2019 have proposed methods for this purpose. However, due to the conceived complexity of the proposed calculation methods, these guidelines have not been generally and effectively applied in clinical laboratories. High workload and measurand heterogeneity favor a pragmatic utilitarian approach. The purpose of this paper is to describe such an approach, including its advantages and disadvantages. Measurement uncertainty should include the most influential factors affecting patients test results. Since patients samples for the same measurand can be analyzed in one laboratory or several laboratories using different measuring systems, the measurement uncertainty should be calculated using results obtained from analyzing the same internal quality control material if commutable or patients pooled/split samples.
  •  
3.
  • Oosterhuis, Wytze P., et al. (författare)
  • Performance specifications for sodium should not be based on biological variation
  • 2023
  • Ingår i: Clinica Chimica Acta. - : ELSEVIER. - 0009-8981 .- 1873-3492. ; 540
  • Tidskriftsartikel (refereegranskat)abstract
    • When increasing the quality in clinical laboratories by decreasing measurement uncertainty, reliable methods are needed not only to quantify the performance of measuring systems, but also to set goals for the performance. Sigma metrics used in medical laboratories for documenting and expressing levels of performance, are evidently totally dependent on the "total permissible error" used in the formulas. Although the conventional biological variation (BV) based model for calculation of the permissible (or allowable) total error is commonly used, it has been shown to be flawed. Alternative methods are proposed, mainly also based on the within-subject BV. Measurement uncertainty models might offer an alternative to total error models. Defining the limits for analytical quality still poses a challenge in both models. The aim of the present paper is to critically discuss current methods for establishing performance specifica-tions by using the measurement of sodium concentrations in plasma or serum. Sodium can be measured with high accuracy but fails by far to meet conventional performance specifications based on BV. Since the use of sodium concentrations is well established for supporting clinical care, we question the concept that quality criteria for sodium and similar analytes that are under strict homeostatic control are best set by biology.
  •  
4.
  • Oosterhuis, Wytze P., et al. (författare)
  • The use of error and uncertainty methods in the medical laboratory
  • 2018
  • Ingår i: Clinical Chemistry and Laboratory Medicine. - : WALTER DE GRUYTER GMBH. - 1434-6621 .- 1437-4331. ; 56:2, s. 209-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Error methods - compared with uncertainty methods - offer simpler, more intuitive and practical procedures for calculating measurement uncertainty and conducting quality assurance in laboratory medicine. However, uncertainty methods are preferred in other fields of science as reflected by the guide to the expression of uncertainty in measurement. When laboratory results are used for supporting medical diagnoses, the total uncertainty consists only partially of analytical variation. Biological variation, pre- and postanalytical variation all need to be included. Furthermore, all components of the measuring procedure need to be taken into account. Performance specifications for diagnostic tests should include the diagnostic uncertainty of the entire testing process. Uncertainty methods may be particularly useful for this purpose but have yet to show their strength in laboratory medicine. The purpose of this paper is to elucidate the pros and cons of error and uncertainty methods as groundwork for future consensus on their use in practical performance specifications. Error and uncertainty methods are complementary when evaluating measurement data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy