SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cockell Simon) "

Sökning: WFRF:(Cockell Simon)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Anstee, Quentin M., et al. (författare)
  • Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically-characterised cohort
  • 2020
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 73:3, s. 505-515
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND AIMS: Genetic factors associated with non-alcoholic fatty liver disease (NAFLD) remain incompletely understood. To date, most GWAS studies have adopted radiologically assessed hepatic triglyceride content as reference phenotype and so cannot address steatohepatitis or fibrosis. We describe a genome-wide association study (GWAS) encompassing the full spectrum of histologically characterized NAFLD.METHODS: The GWAS involved 1483 European NAFLD cases and 17781 genetically-matched population controls. A replication cohort of 559 NAFLD cases and 945 controls was genotyped to confirm signals showing genome-wide or close to genome-wide significance.RESULTS: Case-control analysis identified signals showing p-values ≤ 5 x 10-8 at four locations (chromosome (chr) 2 GCKR/C2ORF16; chr4 HSD17B13; chr19 TM6SF2; chr22 PNPLA3) together with two other signals with p<1 x10-7 (chr1 near LEPR and chr8 near IDO2/TC1). Case-only analysis of quantitative traits steatosis, disease activity score, NAS and fibrosis showed that the PNPLA3 signal (rs738409) was genome-wide significantly associated with steatosis, fibrosis and NAS score and identified a new signal (PYGO1 rs62021874) with close to genome-wide significance for steatosis (p=8.2 x 10-8). Subgroup case-control analysis for NASH confirmed the PNPLA3 signal. The chr1 LEPR SNP also showed genome-wide significance for this phenotype. Considering the subgroup with advanced fibrosis (≥F3), the signals on chromosomes 2, 19 and 22 remained genome-wide significant. With the exception of GCKR/C2ORF16, the genome-wide significant signals replicated.CONCLUSIONS: This study confirms PNPLA3 as a risk factor for the full histological spectrum of NAFLD at genome-wide significance levels, with important contributions from TM6SF2 and HSD17B13. PYGO1 is a novel steatosis modifier, suggesting relevance of Wnt signalling pathways in NAFLD pathogenesis.
  •  
4.
  • Govaere, Olivier, et al. (författare)
  • A proteo-transcriptomic map of non-alcoholic fatty liver disease signatures
  • 2023
  • Ingår i: Nature Metabolism. - : NATURE PORTFOLIO. - 2522-5812. ; 5:4, s. 572-578
  • Tidskriftsartikel (refereegranskat)abstract
    • Govaere et al. integrate circulating protein data from more than 300 patients with non-alcoholic fatty liver disease (NAFLD) with transcriptomics and develop a non-invasive diagnostics tool to identify patients with at-risk NAFLD based on body mass index, type 2 diabetes status and four circulating proteins. Non-alcoholic fatty liver disease (NAFLD) is a common, progressive liver disease strongly associated with the metabolic syndrome. It is unclear how progression of NAFLD towards cirrhosis translates into systematic changes in circulating proteins. Here, we provide a detailed proteo-transcriptomic map of steatohepatitis and fibrosis during progressive NAFLD. In this multicentre proteomic study, we characterize 4,730 circulating proteins in 306 patients with histologically characterized NAFLD and integrate this with transcriptomic analysis in paired liver tissue. We identify circulating proteomic signatures for active steatohepatitis and advanced fibrosis, and correlate these with hepatic transcriptomics to develop a proteo-transcriptomic signature of 31 markers. Deconvolution of this signature by single-cell RNA sequencing reveals the hepatic cell types likely to contribute to proteomic changes with disease progression. As an exemplar of use as a non-invasive diagnostic, logistic regression establishes a composite model comprising four proteins (ADAMTSL2, AKR1B10, CFHR4 and TREM2), body mass index and type 2 diabetes mellitus status, to identify at-risk steatohepatitis.
  •  
5.
  • Govaere, Olivier, et al. (författare)
  • Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis
  • 2020
  • Ingår i: Science Translational Medicine. - Washington, DC, United States : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 12:572
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms that drive nonalcoholic fatty liver disease (NAFLD) remain incompletely understood. This large multicenter study characterized the transcriptional changes that occur in liver tissue across the NAFLD spectrum as disease progresses to cirrhosis to identify potential circulating markers. We performed high-throughput RNA sequencing on a discovery cohort comprising histologically characterized NAFLD samples from 206 patients. Unsupervised clustering stratified NAFLD on the basis of disease activity and fibrosis stage with differences in age, aspartate aminotransferase (AST), type 2 diabetes mellitus, and carriage of PNPLA3 rs738409, a genetic variant associated with NAFLD. Relative to early disease, we consistently identified 25 differentially expressed genes as fibrosing steatohepatitis progressed through stages F2 to F4. This 25-gene signature was independently validated by logistic modeling in a separate replication cohort (n = 175), and an integrative analysis with publicly available single-cell RNA sequencing data elucidated the likely relative contribution of specific intrahepatic cell populations. Translating these findings to the protein level, SomaScan analysis in more than 300 NAFLD serum samples confirmed that circulating concentrations of proteins AKR1B10 and GDF15 were strongly associated with disease activity and fibrosis stage. Supporting the biological plausibility of these data, in vitro functional studies determined that endoplasmic reticulum stress up-regulated expression of AKR1B10, GDF15, and PDGFA, whereas GDF15 supplementation tempered the inflammatory response in macrophages upon lipid loading and lipopolysaccharide stimulation. This study provides insights into the pathophysiology of progressive fibrosing steatohepatitis, and proof of principle that transcriptomic changes represent potentially tractable and clinically relevant markers of disease progression.
  •  
6.
  • Johnson, Katherine, et al. (författare)
  • Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression : Diagnostic and mechanistic relevance
  • 2022
  • Ingår i: JHEP Reports. - : Elsevier. - 2589-5559. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Serum microRNA (miRNA) levels are known to change in non-alcoholic fatty liver disease (NAFLD) and may serve as useful biomarkers. This study aimed to profile miRNAs comprehensively at all NAFLD stages.Methods: We profiled 2,083 serum miRNAs in a discovery cohort (183 cases with NAFLD representing the complete NAFLD spectrum and 10 population controls). miRNA libraries generated by HTG EdgeSeq were sequenced by Illumina NextSeq. Selected serum miRNAs were profiled in 372 additional cases with NAFLD and 15 population controls by quantitative reverse transcriptase PCR.Results: Levels of 275 miRNAs differed between cases and population controls. Fewer differences were seen within individual NAFLD stages, but miR-193a-5p consistently showed increased levels in all comparisons. Relative to NAFL/non-alcoholic steatohepatitis (NASH) with mild fibrosis (stage 0/1), 3 miRNAs (miR-193a-5p, miR-378d, and miR378d) were increased in cases with NASH and clinically significant fibrosis (stages 2-4), 7 (miR193a-5p, miR-378d, miR-378e, miR-320b, miR-320c, miR-320d, and miR-320e) increased in cases with NAFLD activity score (NAS) 5-8 compared with lower NAS, and 3 (miR-193a-5p, miR-378d, and miR-378e) increased but 1 (miR-19b-3p) decreased in steatosis, activity, and fibrosis (SAF) activity score 2-4 compared with lower SAF activity. The significant findings for miR-193a-5p were replicated in the additional cohort with NAFLD. Studies in Hep G2 cells showed that following palmitic acid treatment, miR-193a-5p expression decreased significantly. Gene targets for miR-193a-5p were investigated in liver RNAseq data for a case subgroup (n = 80); liver GPX8 levels correlated positively with serum miR-193a-5p.Conclusions: Serum miR-193a-5p levels correlate strongly with NAFLD activity grade and fibrosis stage. MiR-193a-5p may have a role in the hepatic response to oxidative stress and is a potential clinically tractable circulating biomarker for progressive NAFLD.Lay summary: MicroRNAs (miRNAs) are small pieces of nucleic acid that may turn expression of genes on or off. These molecules can be detected in the blood circulation, and their levels in blood may change in liver disease including non-alcoholic fatty liver disease (NAFLD). To see if we could detect specific miRNA associated with advanced stages of NAFLD, we carried out miRNA sequencing in a group of 183 patients with NAFLD of varying severity together with 10 population controls. We found that a number of miRNAs showed changes, mainly increases, in serum levels but that 1 particular miRNA miR-193a-5p consistently increased. We confirmed this increase in a second group of cases with NAFLD. Measuring this miRNA in a blood sample may be a useful way to determine whether a patient has advanced NAFLD without an invasive liver biopsy.
  •  
7.
  • Sen, Partho, 1983-, et al. (författare)
  • Genome-scale metabolic modeling of human hepatocytes reveals dysregulation of glycosphingolipid pathways in progressive non-alcoholic fatty liver disease
  • 2021
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 75:Suppl. 2, s. S256-S256
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background and aims: Non-alcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver diseases intertwined with the metabolic disorders. The prevalence of NAFLD is rapidly increasing worldwide, while the pathologyand the underlying mechanism driving NAFLD is not fully understood. In NAFLD, a series of metabolic changes takes place in the liver. However, the alteration of the metabolic pathways in the human liver along the progression of NAFLD,i.e., transition from non-alcoholic steatosis (NAFL) to steatohepatitis (NASH) through cirrhosis remains to be discovered. Here, we sought to examine the metabolic pathways of the human liver across the full histological spectrum of NAFLD.Method: We analyzed the whole liver tissue transcriptomic (RNA-Seq)1 and serum metabolomics data obtained from a large cohort of histologically characterized patients derived from the European NAFLD Registry (n = 206), and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. The integrative approach employed in this study has enabled us to understand the regulation of the metabolic pathways of human liver in NAFL, and with progressive NASH-associated fibrosis (F0-F4).Results: Our study identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis. Furthermore, by applying genome-scale metabolic modeling, we were able to identify the metabolic differences among carriers of widely validated genetic variants associated with NAFLD/NASH disease severity in three genes (PNPLA3,TM6SF2andHSD17B13).Conclusion: The study provides insights into the underlying pathways of the progressive-fibrosing steatohepatitis. Of note, there is a marked dysregulation of the glycosphingolipid metabolism in the liver of the patients with advanced fibrosis.
  •  
8.
  • Sen, Parho, et al. (författare)
  • Metabolism of human liver on a genome scale in non-alcoholic fatty liver disease
  • 2020
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 73:Suppl. 1, s. S671-S672
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background and Aims: Non-alcoholic fatty liver disease (NAFLD) is a major risk factor leading to chronic liver disease and type 2 diabetes. By using patient-matched liver transcriptomics and serum metabolomics data from the EPoS European NAFLD Registry cohort, we conducted genome-scale metabolic modeling (GSMM) to dissect hepatic metabolism across the full spectrum of NAFLD, from steatosis (NAFL) to NASH-cirrhosis.Method: We compared the genome-scale metabolic networks across different stages of NAFLD together with healthy controls (HC, n = 10), with the patients divided into three groups: steatosis (n = 60), NASH (n = 139; F0: n = 4, F1 n = 28, F2: n = 53, F3: n = 54) and cirrhosis (n = 14). Based on transcriptomics data obtained from the liver biopsy of the patients enrolled in the European NAFLD Registry, genome-scale metabolic models of the liver were developed and contextualized for these conditions. GSMM, as a scaffold, connects metabolic genes (i.e., enzymes) and metabolic pathways. Moreover, genome-scale networks can be constrained with multi-‘omics’ datasets, and thus connect an organism’s genotype to phenotype.Results: GSMM revealed that similar metabolic functions are perturbed in NAFL and NASH, while additional metabolic processes were regulated in advanced fibrosis/cirrhosis. The primary liver processes such as glycerophospholipid metabolism, chondroitin/heparan sulfate, bile acid and fatty acid biosynthesis and oxidation (carnitine shuttle in mitochondria) were affected. Lipid precursors for VLDL particles were upregulated in NAFL. Integrative analysis of transcriptomics and serum metabolomics data also revealed that several microbial pathways are up-regulated in NAFLD and may contribute to pathogenesis.Conclusion: A GSMM approach has identified common and specific liver metabolic pathways across different stages of NAFLD progression. Data were cross-validated by serum metabolomics, where in addition analysis also revealed that specific microbially-produced metabolites are elevated in NAFLD as compared to controls. These results provide important insights into the changes in hepatic metabolism occurring during NAFLD/NASH pathogenesis.
  •  
9.
  • Sen, Partho, 1983-, et al. (författare)
  • Quantitative modeling of human liver reveals dysregulation of glycosphingolipid pathways in nonalcoholic fatty liver disease
  • 2022
  • Ingår i: iScience. - : Cell Press. - 2589-0042. ; 25:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease that is associated with multiple metabolic disturbances, yet the metabolic pathways underlying its progression are poorly understood. Here, we studied metabolic pathways of the human liver across the full histological spectrum of NAFLD. We analyzed whole liver tissue transcriptomics and serum metabolomics data obtained from a large, prospectively enrolled cohort of 206 histologically characterized patients derived from the European NAFLD Registry and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. We identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis. Furthermore, we derived GEMs and identified metabolic signatures of three common NAFLD-associated gene variants (PNPLA3, TM6SF2, and HSD17B13). The study demonstrates dysregulated liver metabolic pathways which may contribute to the progression of NAFLD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy